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ABSTRACT

Kim, Kukjin PhD, Purdue University, August 2018. Turbulent Heat Transfer in
Supercritical Fluids Under Transcritical Temperature Conditions. Major Professor:
Carlo Scalo, School of Mechanical Engineering.

Boiling at the ambient pressure undergoes a critical heat flux in the nucleate boil-

ing regime and it determines the thermal efficiency and the applicable range of heat

flux (low/moderate heat flux, <105 W/m2; high heat flux, 2.5×105–107 W/m2; ultra-

high heat flux, 107–109 W/m2). Since the regime beyond the critical heat flux shows

a significant reduction in the overall achievable heat transfer rate, it is a reference for

efficient heat transfer.

We propose to investigate supercritical fluids to overcome such a limit. A super-

critical state is reached when the fluid is at temperatures and pressures exceeding

its critical point. The supercritical fluid has simultaneously a liquid-like density and

gas-like diffusivity, without a distinctive phasechange or surface tension, with the

potential of overcoming deleterious effects and limitations of classical boiling.

In this study, we have performed direct numerical simulations solving the com-

pressible Naview–Stokes equations for natural (R-134a, carbon dioxide, and methanol)

and forced (R-134a) convection in transcritical temperature ranges in order to inves-

tigate and discuss the phenomena of pseudophase change with a specific focus on

the heat transfer and turbulence structures/dynamics using structural and statistical

approaches.

In natural convection pseudoboiling at supercritical pressure in transcritical tem-

perature ranges (∆T = 1 K, 5 K, 20 K, and 40 K where ∆T is bottom-to-top tempera-

ture difference), increasing ∆T leads to the higher recirculation frequencies, enhance-

ment of heat transfer, and breakup of global circulating motion. Two-dimensional

simulations have limitations to proper prediction of the flow dynamics and heat flux
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compared to three-dimensional ones. The proposed heat transfer correlation explains

the natural convection pseudoboiling well, yet not perfectly. The real fluid effects

cause the large thermodynamic gradients at the pseudotransition interface and in-

creasing ∆T requires finer grid resolution due to unresolved length scales.

Turbulent forced convection is studied with ∆T = 5 K, 10 K, and 20 K (Ttop/bot =

Tpb ± ∆T/2). At these conditions, a pseudophase change occurs at various wall-

normal locations within the turbulent channel from ypb/h = −0.23 (∆T = 5 K) to

0.89 (∆T = 20 K), where h is the channel half-height and y = 0 the centerplane

position. Increases in ∆T also result in increasing wall-normal gradients in the semi-

local friction Reynolds number. Classical, compressible scaling laws of the mean

velocity profile are unable to fully collapse real fluid effects in this flow. The proximity

to the pseudotransitioning layer inhibits the turbulent velocity fluctuations, while

enhancing the temperature and density fluctuations. The latter reach peak values

(relative to their mean) comparable to what is observed in a M = 3.0 ideal gas

isothermal-wall compressible turbulent channel flow. Conditional probability analysis

reveals that the sheet of fluid undergoing pseudophase change is characterized by a

dramatic reduction in the kurtosis of density fluctuations, hence becoming thinner

as ∆T is increased. Instantaneous visualizations show dense fluid ejections from

the pseudoliquid viscous sublayer, some reaching the channel core, causing positive

values of density skewness in the respective buffer layer region (vice versa for the

top wall) and an impoverishment of the turbulent flow structure population near

pseudotransitioning conditions.
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1 INTRODUCTION

This chapter provides a brief background on critical heat flux and thermodynamic

characteristics at supercritical conditions. Subsequently, natural/forced convection

in supercritical fluids are introduced, and finally the objectives and the outline of the

dissertation are presented.

1.1 Critical Heat Flux, Supercritical Condition, and Pseudophase Change

Figure 1.1. Boiling regimes and heat flux trend with increasing wall
temperature [1].
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In a typical pool boiling experiment, e.g. a heated plate submerged in water,

the state of flow undergoes several transitions as the plate temperature is increased

as shown in Figure 1.1. Initially, natural convection occurs and then boiling starts

when temperature reaches a certain value. As temperature keeps increasing, the

second state, isolated bubble regime, is observed which is followed by the third state

characterized with slugs and columns. These two states can be both referred to

as nucleate boiling. In the final stage of nucleate boiling, heat flux is maximized,

reaching a so-called critical heat flux (CHF, also termed a boiling crisis) which is a

key factor determining the thermal efficiency and limiting the range of applicability

(low/moderate heat flux, <105 W/m2; high heat flux, 2.5×105–107 W/m2; ultra-

high heat flux, 107–109 W/m2). In transition boiling as the fourth regime, heat flux

deteriorates and decreases rapidly. Finally, only when the fifth state, film boiling,

is achieved, the heat flux rises again. Namely, the CHF refers to the maximum

attainable heat flux before cessation of nucleate boiling so that causes low efficiency

of heat transfer in transition boiling and it is essentially based on the phase change

mechanism between liquid and vapor [1, 2].

The operating pressure of propulsion systems and power generators, such as gas

turbines, liquid rocket engines, or supercritical water-cooled reactors, is continuously

increasing in order to improve mechanical and thermodynamics performances. As

a result, the working fluid often reaches pressures and temperatures exceeding its

critical values, p > pcr and T > Tcr respectively, hence achieving a supercritical state,

and the fluid in that regime is named a supercritical fluid (see Figure 1.2).

The lay understanding is that supercritical fluids share properties of both gases

and liquids, in a seemingly homogeneous, yet ambiguous state of matter, such as

surface tension converging to zero, liquid-like density, and gas-like diffusivity [3, 4].

In reality, there is an identifiable transition between pseudoliquid (or liquid-like) and

pseudogas (or gas-like) conditions, especially in the vicinity of the critical point corre-

sponding to a transcritical temperature regime, determined by the pseudoboiling line

(PBL) or the Widom line defined as the set of maxima of the thermodynamic corre-
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Figure 1.2. Pressure-temperature phase diagram showing the critical
point (T = Tcr, p = pcr) and the supercritical regime (T > Tcr,
p > pcr) (Credit: Mario Tindaro Migliorino).

lation lengths [5] and the maximum correlation length is represented with various re-

sponse functions which are the second derivative of thermodynamic potential [5–10].

The PBL is an extension of the subcritical liquid-gas coexistence curve above the

critical point [11] and is hereafter defined as the locus of pressure and temperature

values (ppb > pcr, Tpb > Tcr) at which the thermal expansion coefficient of the fluid,

αp = − (∂ρ/∂T )p /ρ, is maximum. A pseudophase transition, or simply pseudotran-

sition, occurs, for example, when temperature changes from T < Tpb to T > Tpb (or

vice versa), for given pressure conditions p = ppb, hence crossing the PBL in the p−T
phase diagram.

Unlike a subcritical phase change where the concept of latent heat accounts for

the discontinuity of enthalpy, supercritical pseudotransition takes place progressively

over a finite temperature range bracketing pseudoboiling (PB) conditions. While

molecules are homogeneously distributed in space with a well-defined mean free path

in the liquid-like (T << Tpb) or gas-like (T >> Tpb) supercritical states, heteroge-
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neously distributed microscopic clusters of tightly packed molecules are formed during

pseudotransition [12]. This results in abrupt changes in compressibility and density

and a rapid, albeit continuous, increase in the heat capacity with gas-like behavior re-

tained between denser molecular clusters as well as optical dispersion effects allowing

the experimental identification of pseudotransition [8, 13].

1.2 Natural/Forced Convection in Supercritical Fluids

In modern engineering applications, improvement in heat transfer is a key issue

in terms of thermodynamic efficiency and thermal instability/fatigue since mechani-

cal integration and complexity become higher, especially in advanced power systems

operating at supercritical pressure, and most of the heat transfer mechanism are

intimately related to natural and forced convection.

Natural convection by the buoyancy effect has been applied for pumping fluids

or cooling advanced systems such as a thermal pump, a solar heating system, and a

nuclear reactor in the supercritical environment and their performance and stability

have been studied [14–23]. While higher flow rate in a natural convection loop system

can be achieved by loading the working fluid initially near its pseudoboiling region

as well as large density difference between a cooling and a heating part [14], high

speed flow causes a steep gradient of near-wall temperature and as a result, high heat

transfer coefficient is accompanied [15]. It has been reported that approaching the

critical point increases the heat transfer coefficient [16] and accelerates heat transfer

significantly by a so-called ‘piston effect ’ [24–26]. Hasan & Farouk [17] investigated

that in the nearcritical natural convection, the mechanism of thermal energy trans-

port is highly dependent on the Rayleigh number, pressure, and temperature and a

divergence of bulk viscosity near the critical point affects the boundary layer develop-

ment. However, abnormal flow instability with pressure perturbation is observed near

the pseudoboiling point (PBP) due to the rapid variation of thermodynamic prop-

erties [18, 19] and the pressure perturbation is responsible for the repetitive reversal
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flow in the natural convection circulation loop [20,21]. Chen et al. [22] reported that

in the transcritical temperature and supercritical pressure regime of carbon dioxide,

there exists the second transition point beyond the PBP at which viscosity and ther-

mal conductivity begin increasing after a sharp decrease near the PBP and therefore,

it impedes flow acceleration and improves heat transfer resulting in a stabilized flow

pattern. Also, supercritical carbon dioxide flow in a large diameter pipe (D = 15

mm) is more stable with smoothened velocity profiles compared to a small one (D

= 6 mm) [23]. Even though some studies have suggested supercritical heat transfer

correlations predicting the unusual deterioration phenomenon as well as the normal

and enhanced heat transfer regions in forced convection [27–29] or covering the be-

haviors in the nearcritical regime along with far from the critical point in natural

convection [14,15, 30,31], a robust explanation has not been obtained yet due to the

complexity of combined factors and the drastic variations of thermodynamic proper-

ties [32–34].

Even though forced convection needs additionally complex devices controlling fluid

flow compared to natural convection, it has been studied in various aspects, such as

heat transfer, turbulent characteristics, and thermodynamic fluctuations affected by

real fluid effects, because of its more pratical use in the mechanical systems. The

characteristics of supercritical fluid have been found to avoid the CHF and increase

the gross thermal efficiency [35]. Also, heat transfer is enhanced near the PBP where

specific heat and thermal conductivity have a peak or a hump [36] and it is amplified

by turbulence effects in forced convection [37]. Nevertheless, such high heat transfer

performance in the pseudoboiling might be hindered due to a pseudofilm boiling phe-

nomenon similar to film boiling under subcritical pressures [38]. Experimental studies

on forced convection in supercritical water flow by Yamagata et al. [39] showed that

at high heat fluxes relatively to the flow rate, the deterioration in heat transfer occurs

with the sharply increased wall temperature that the reason is not explained clearly,

but is presumed to be due to the pseudofilm boiling. On the other hand, Shiralkar

& Griffith [40] found that conditions of the high ratio of heat flux to flow rate, low
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inlet enthalpy, and nearcritical pressure make the heat transfer deterioration larger.

Also, Liao & Zhao [41] discerned that buoyancy affects heat transfer coefficients signif-

icantly even in forced convection, from their experiments through comparison between

the flow orientations (horizontal and vertical) of supercritical carbon dioxide. Bae et

al. [42] reported that high turbulence level in the upward flow improves the heat

transfer impairment related to the buoyancy effect. Especially, stong temperature

fluctuation near the wall (i.e., a thin thermal boundary layer) promotes heat transfer

to the supercritical pressure flows [43,44].

1.3 Relevance to Gas Turbine Engine Applications

250�K

Figure 1.3. Core section of a Rolls-Royce Turboméca Adour turbofan
displayed at the Musée de l’Air in Paris, France with air flow from
left to right (Credit: Olivier Cleynen).

Fuel in aeronautical applications is typically stored in subcritical temperature

conditions (e.g. in the wings of an airplane at cruising conditions where outside air

temperatures reach−40 ℃) under high pressures, due to the pumping power necessary
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to allow fuel to be delivered to the engines. Fuel gets heated to improve combustion

efficiency before it reaches the combustion chamber by oil and other fluids that, in

turn, need to be cooled (see Figure 1.3). Hot lubricant oil, for example, exiting the

gear box of the new Ultrafan engine by Rolls-Royce, carries approximately 500 W of

heat to be dissipated.

Fluid dynamic instabilities commonly occur in highly pressurized systems. These

instabilities typically occur in fluids that are: (1) pressurized slightly above their crit-

ical point (p > pcr); and (2) heated at or above their critical temperature Tcr (hence

transcritical), where the pseudoboiling occurs. Also, heightened coupling among pres-

sure, temperature, and density in the transcritical or near-critical regime, p ' pcr and

T ' Tcr, accentuates the unwanted instabilities, similar to thermoacoustic oscilla-

tions, in the injection systems leading to the combustion chamber [45] as well as fuel

heat exchangers, also illustrated in Figure 1.3 [46–48]; the intense flow oscillations

often lead to catastrophic hardware failure, if uncontrolled. These so-called real fluid

effects have already been reproduced in recent experiments at Purdue and are under

investigation in other efforts carried out in Dr. Scalo’s lab.

One example of where a usable temperature difference to drive cooling devices can

be found is between the bypass flow duct and the combustion chamber. Also, results

from a recent review meeting held in Rolls-Royce Indianapolis yielded the following

Table 1.1. Operating temperature conditions in the gas turbine engine.

Type T (℃) Type T (℃)

1 Fan air 40 A Turbine casing 430

2 Fuel 20–120 B CDT 650

3 Ambient air −40 C Turbine exhaust air 430

4 Aircraft skin 50 D Oil 200

5 CDT air – E Turbine flow 1500

6 Oil 65 F Electric generator 200
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possible cold (left) and hot (right) pairing options within the gas turbine engine (see

Table 1.1) and possible cold/hot sink pairings are 1-A, 6-F, 5-E,1-C, 2-B, 3-F which

could drive a supercritical boiling device.

1.4 Research Objectives and Dissertation Outline

The objectives of this study are to develop high-quality numerical simulation tools

which can model the pseudophase change in supercritical fluids and investigate its

turbulent heat transfer dynamics. Setups explored here (Setups A and B) study nat-

ural and forced convection in supercritical fluids between two isothermal boundaries

at a given temperature difference, ∆T . The novelty of the proposed approach is

to operate working fluids at supercritical pressures, and specifically along the PBL,

achieving transcritical or pseudophase changing conditions.

Chapter 2 presents the governing equations for a fully compressible flow (Section

§2.1) and the thermodynamic models (Section §2.2) which account for the real fluid

effects (e.g. supercritical conditions) and were implemented into the high-order com-

pressible Navier–Stokes solver, Hybrid (Section §2.3). The computational setups for

the natural convection pseudoboiling and the turbulent forced convection study are

outlined in Section §2.4.

In Chapter 3, the effects of pseudoboiling on natural convection dynamics are

analyzed via comparisons between two-dimensional and three-dimensional simulations

(Section §3.1); instantaneous flow field and wall heat flux analysis, heat transfer

correlation, and probability density functions (PDF). Also, turbulent statistics of

mean and fluctuating quantities and its structures are presented (Section §3.2).

Chapter 4 presents the turbulent mean and fluctuating hydro- and thermody-

namic quantities with grid convergence study in turbulent forced convection (Section

§4.2) followed by analysis on PDF and turbulent energy spectra (Section §4.3). In-

stantaneous turbulent structures are investigated and compared with the correlation
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statistics to infer their role in the heat transfer near the walls of the turbulent channel

flow (Section §4.4).
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2 PROBLEM FORMULATION

2.1 Governing Equations for Compressible Flow

The governing equations of mass, momentum, and total energy for a fully com-

pressible flow in the turbulent forced convection study are solved in conservative form,

which reads

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xj
+
∂τij
∂xj

(2.2)

∂ρE

∂t
+

∂

∂xj
[uj (ρE + p)] =

∂

∂xj
(uiτij − qj) (2.3)

where t is time, xj (j = 1, 2, 3) the coordinates in x, y, and z direction, uj the velocity

component in each direction, ρ the density, p the pressure, and E the total energy

per unit mass. Unless otherwise stated, all symbols refer to dimensional quantities.

In order to solve the spurious pressure oscillation issue observed more conspicu-

ously in the natural convection pseudoboiling, we implemented the pressure evolution

equation derived by Kawai et al. [49] instead of using the total energy equation and

it reads

∂p

∂t
+
∂puj
∂xj

+
(
ρc2 − p

) ∂uj
∂xj

=
αp

ρcvκT

(
τij
∂ui
∂xj
− ∂qj
∂xj

+ uifi

)
(2.4)

where fi(= ρg) is the body force, g the gravitational acceleration, c the speed of sound,

αp(= (∂p/∂T )ρ / [ρ (∂p/∂ρ)T ]) the isobaric thermal expansion coefficient, cv the heat

capacity at constant volume, κT (= 1/ [ρ (∂p/∂ρ)T ]) the isothermal compressibility

coefficient, and T the temperature.
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The viscous and conductive heat fluxes in Equations (2.2) and (2.3) are, respec-

tively

τij = 2µ

[
Sij −

1

3

∂uk
∂xk

δij

]
(2.5)

qj = −λ ∂T
∂xj

= −cpµ
Pr

∂T

∂xj
(2.6)

where µ is the dynamic viscosity, λ the thermal conductivity, Sij the strain rate tensor

given by Sij = (∂uj/∂xi + ∂ui/∂xj) /2, cp the heat capacity at constant pressure, and

Pr the Prandtl number.

2.2 Modeling of Thermodynamic and Transport Properties for Real Flu-

ids

The Peng–Robinson (PR) equation of state (EOS) [50] is implemented to model

the working fluids of choice for this study, R-134a (1,1,1,2-tetrafluoroethane, CH2FCF3),

carbon dioxide (CO2), and methanol (CH3OH) for the natural convection pseudoboil-

ing and R-134a for the turbulent forced convection. Departure functions guaranteeing

full thermodynamic consistency with the chosen EoS have been derived following Ew-

ing & Peters [51]. Transport properties such as viscosity and thermal conductivity

are estimated via the Chung’s method [52], which predicts experimental values within

5% error [53]. The choice of an accurate and simple equation of state such as the

PR EoS provides a consistent thermodynamic model, computationally less expensive

than interpolating tabulated values.

The PR EoS reads

p =
RuT

vm − b
− aα

v2m + 2bvm − b2
(2.7)

a =
0.45724R2

uT
2
cr

pcr
b =

0.07780RuTcr
pcr

α =
[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1− T 0.5

r

)]2
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where Ru is the universal gas constant, vm the molar volume, ω the acentric fac-

tor, and Tr = T/Tcr the reduced temperature. The terms, a, b, and α account for

intermolecular attractive and repulsive effect and nonspherical shape of molecules.

The thermodynamic relations based on the PR EoS that incorporate departure

functions are

e (T, ρ) = e0 (T ) +
1√

8bMw

[
T

(
∂aα

∂T

)
− aα

]
ln

(
Mw +

(
1 +
√

2
)
bρ

Mw +
(
1−
√

2
)
bρ

)
(2.8)

h (T, ρ) = e (T, ρ) +
p

ρ
(2.9)

cv (T, ρ) = c0v (T ) +
T√

8bMw

(
∂2aα

∂T 2

)
ln

(
Mw +

(
1 +
√

2
)
bρ

Mw +
(
1−
√

2
)
bρ

)
(2.10)

cp (T, ρ) = cv (T, ρ) +
T

ρ2

(
∂p

∂T

)2

ρ

/(
∂p

∂ρ

)

T

(2.11)

γ (T, ρ) =
cp (T, ρ)

cv (T, ρ)
(2.12)

c (T, ρ) =

√
γ (T, ρ)

(
∂p

∂ρ

)

T

(2.13)

where e is the internal energy, h the enthalpy, cv the heat capacity at constant volume,

cp the heat capacity at constant pressure, γ the specific heat ratio, c the speed of

sound, and Mw the molecular weight. The superscript, 0, denotes the thermodynamic

property of the equivalent ideal gas state.

Departure functions derived from the selected equation of state (partial derivatives

in the relations for cp and c) are given by

(
∂p

∂T

)

ρ

=
ρRu

Mw − bρ
−
(
∂aα

∂T

)
ρ2[

Mw +
(
1 +
√

2
)
bρ
] [
Mw +

(
1−
√

2
)
bρ
] (2.14)

(
∂p

∂ρ

)

T

=
MwRuT

(Mw − bρ)2
− 2aαρMw (Mw + bρ)
[
Mw +

(
1 +
√

2
)
bρ
]2 [

Mw +
(
1−
√

2
)
bρ
]2 (2.15)

The viscosity via the Chung’s method is given by

µ = µ∗
36.344 (MwTcr)

1/2

v
2/3
m,c

(2.16)
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where vm,c is the critical molar volume and µ∗ is

µ∗ =
(T ∗)1/2

Ωv

Fc
[
(G2)

−1 + A6y
]

+ µ∗∗ (2.17)

T ∗, Ωv, and Fc are given as

T ∗ = 1.2593Tr (2.18)

Ωv =
[
A (T ∗)−B

]
+C [exp (−DT ∗)]+E [exp (−FT ∗)]+GT ∗Bsin

(
ST ∗W −H

)
(2.19)

Fc = 1− 0.2756ω + 0.059035µ4
r + κa (2.20)

where κa is the association factor for hydrogen bonding effect of highly polar sub-

stances such as alcohols and acids, Ωv and Fc mean the viscosity collision integral and

consideration for the shape and polarity of molecules for dilute gases, respectively.

The dimensionless dipole moment, µr, is given by

µr = 131.3
χ

(vm,cTcr)
1/2

(2.21)

where χ is the dipole moment of molecule.

The other terms appearing in the relationships above are as follows

y =
ρvm,c

6
(2.22)

G1 =
1− 0.5y

(1− y)3
(2.23)

G2 =
A1 [[1− exp (−A4y)] /y] + A2G1exp (A5y) + A3G1

A1A4 + A2 + A3

(2.24)

µ∗∗ = A7y
2G2exp

[
A8 + A9 (T ∗)−1 + A10 (T ∗)−2

]
(2.25)

Ai = a0 (i) + a1 (i)ω + a2 (i)µ4
r + a3 (i)κa (2.26)

The thermal conductivity was developed by following a similar approach to vis-

cosity.

λ =
31.2µ0Ψ

M ′
w

(
G−12 +B6y

)
+ qB7y

2T 1/2
r G2 (2.27)

where

µ0 = 40.785
Fc (MwT )1/2

v
2/3
m,cΩv

(2.28)
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Ψ = 1 + α

(
0.215 + 0.28288α− 1.061β + 0.26665Z

0.6366 + βZ + 1.061αβ

)
(2.29)

α =
cv
Ru

− 1.5 (2.30)

β = 0.7862− 0.7109ω + 1.3168ω2 (2.31)

Z = 2.0 + 10.5T 2
r (2.32)

M ′
w = Mw/103 (2.33)

q = 3.586× 10−3
(Tcr/M

′
w)1/2

v
2/3
m,c

(2.34)

For the term, G2, the form is identical to the one of viscosity, but Ai is replaced

with Bi which has the different values. All the other terms that are not defined and

the empirical coefficients are found in Poling et al. [53]. In order to prove adequacy

and accuracy of implementation of the equations, comparisons against the NIST

database [54] and among the working fluids are included in Appendix A (Figures A.1–

A.3).

2.3 High-Order Structured Compressible Navier–Stokes Solver: Hybrid

The proposed numerical simulations have been carried out with Hybrid, a fully

compressible Navier–Stokes solver originally written by Prof. Johan Larsson. This

code utilizes a finite central difference scheme with a fourth order accuracy by summation-

by-parts (SBP) operators for the inviscid terms and a second order accuracy for the

viscous terms. The time advancement is achieved by a fourth order accurate Runge–

Kutta method. This code has been used in several canonical numerical investigations

such as shock-vortex interaction, compressible homogeneous isotropic turbulence [55],

and shock/turbulence interaction [56, 57]. Hybrid has also been recently scaled up

to 2 million CPU cores [58]. The code solves single component fluid, which is a

suitable modeling approach for a supercritical flow since for supercritical pressures,

p > pcr, surface tension becomes negligible and numerical techniques typical of multi-

phase simulations, such as interface tracking or reconstruction, are not required. New
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features that have been added to the code include parallel HDF5 [59] input/output

capabilities as well as the PR EoS and the Chung’s method.

2.4 Computational Setup

Two classic heat transfer problems extended to supercritical fluids will be tackled

with the use of direct numerical simulations (DNS).

• Setup A: Pseudoboiling between two differentially heated plates with heat

transfer driven by natural convection, with R-134a, carbon dioxide, and methanol

as the working fluids

• Setup B: Pseudoboiling between two differentially heated plates with heat

transfer driven by turbulent forced convection, with only R-134a as the working

fluid

In both cases, the working fluid is kept in transcritical temperature conditions at

supercritical pressure.

2.4.1 Setup A: Natural Convection Pseudoboiling

To simulate heat transfer in the natural convection pseudoboiling, a setup as shown

in Figure 2.1 is employed. In the present study, the computational domain consists

of bottom and top isothermal walls with a periodic boundary condition in the x and

z directions. The assigned wall temperature conditions maintain the transcritical

temperature regime with the hot bottom wall and the cold top wall by taking Tbot/top

as

Tbot/top = Tpb ±∆T/2, ∆T = Tbot − Ttop (2.35)

where Tpb is the pseudoboiling temperature. Gravity acts along the y direction as the

body force which enables natural convection by the difference in density distribution

near each wall, namely buoyancy.
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Table 2.1. Simulation parameters of the natural convection pseu-
doboiling achieving the transcritical temperature regimes for R-134a,
carbon dioxide, and methanol with box sizes, 4 mm × 2 mm for the
two-dimension and 4 mm × 2 mm × 2 mm for the three-dimension.
The subcripts ‘b’, ‘pb’, and ‘cr’ indicate bulk, pseudoboiling, and crit-
ical properties.

Fluid pb Tpb (K) ∆T (K) Tbot (K) Ttop (K)

R-134a (#)

CH2FCF3

pcr = 40.59 bar

Tcr = 374.26 K

1.1 pcr 379.1

1 379.6 378.6

5 381.6 376.6

20 389.1 369.1

40 399.1 359.1

Carbon dioxide (4)

CO2

pcr = 73.74 bar

Tcr = 304.13 K

1.1 pcr 308.4

1 308.9 307.9

5 310.9 305.9

20 318.4 298.4

40 328.4 288.4

Methanol (2)

CH3OH

pcr = 80.97 bar

Tcr = 512.64 K

1.1 pcr 518.4

1 518.9 517.9

5 520.9 515.9

20 528.4 508.4

40 538.4 498.4
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Figure 2.1. Schematic of the natural convection pseudoboiling in the
transcritical temperature regime. Simulation parameters are given in
Table 2.1.

The working fluids investigated are R-134a (CH2FCF3), carbon dioxide (CO2),

and methanol (CH3OH) and their ∆T conditions are 1 K, 5 K, 20 K, and 40 K.

The bulk pressure is set to 44.649 bar for R-134a, 81.114 bar for carbon dioxide,

and 89.067 bar for methanol corresponding to 1.1 times the critical pressure of each

fluid (see Table 2.1 for more details). Also, the accumulated dataset information in

terms of the boiling cycle corresponding to each fluid and ∆T condition is shown in

Tables 2.2 and 2.3

2.4.2 Setup B: Turbulent Forced Convection

The computational setup is a three-dimensional compressible turbulent channel

flow for studying the turbulent forced convection (Figure 2.2) kept at a nominal bulk

pressure of pb ' 1.1pcr, corresponding to the pseudoboiling temperature of Tpb =

379.1 K defined based on the maximum isobaric thermal expansion coefficient (Fig-

ure 2.3a). The assigned isothermal top and bottom wall boundary conditions bracket

the pseudoboiling temperature, Ttop/bot = Tpb ±∆T/2, maintaining transcritical tem-
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Table 2.2. Boiling cycle of the two-dimensional pseudoboiling for R-
134a, carbon dioxide, and methanol at pb = 1.1pcr and ∆T = 1 K, 5
K, 20 K, and 40 K.

∆T (K) 1 5 20 40

Fluid R-134a

Nx ×Ny ×Nz 128×128×1 256×256×1 512×512×1 128×128×1

Boiling cycle

(1 boiling cycle (s))

6.000

(0.500)

6.071

(0.280)

2.900

(0.130)

7.222

(0.090)

Fluid Carbon dioxide

Nx ×Ny ×Nz 128×128×1 256×256×1 512×512×1 128×128×1

Boiling cycle

(1 boiling cycle (s))

5.571

(0.350)

2.653

(0.170)

4.917

(0.120)

6.325

(0.080)

Fluid Methanol

Nx ×Ny ×Nz 128×128×1 256×256×1 256×256×1 64×64×1

Boiling cycle

(1 boiling cycle (s))

4.615

(0.650)

4.952

(0.250)

6.667

(0.120)

33.333

(0.090)

Table 2.3. Boiling cycle of the three-dimensional pseudoboiling for
carbon dioxide at pb = 1.1pcr and ∆T = 1 K, 5 K, 20 K, and 40 K.

∆T (K) 1 5 20 40

Fluid Carbon dioxide

Nx ×Ny ×Nz 128×128×64 256×256×128 256×256×128 128×128×64

Boiling cycle

(1 boiling cycle (s))

5.571

(0.350)

0.788

(0.170)

1.375

(0.120)

6.988

(0.080)

perature conditions in common with the natural convection pseudoboiling (Figure

2.3b), yet with the hot top wall and the cold bottom wall.
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Pseudogaseous layer

Pseudoliquid layer

Figure 2.2. Schematic of the turbulent forced convection in the tran-
scritical temperature regime. Simulation parameters are given in Ta-
bles 2.4 and 4.4.

Figure 2.3. Phase diagram for R-134a showing the critical point
(pcr = 40.59 bar, Tcr = 374.26 K) (2), the pseudoboiling line (- - -),
and the isolines of isobaric thermal expansion coefficient, αp (—–,
K−1) (a); density and isobaric heat capacity versus temperature for
p = 1.1pcr with the pseudoboiling point ( ) and top-to-bottom tem-
perature differences, ∆T , bracketing Tpb = 379.1 K (b).

Top-to-bottom wall temperature differences investigated are ∆T = Ttop − Tbot =

5 K, 10 K, and 20 K, with bulk density set to ρb = 450 kg/m3, 474 kg/m3, and 520

kg/m3, respectively, determined via trial and error to obtain the desired bulk pressure

for all cases (see Tables 2.4 and 4.4). Periodic boundary conditions are applied in
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Table 2.4. Simulation parameters of the turbulent forced convection
achieving the transcritical temperature regimes for R-134a with box
sizes, 12 mm × 2 mm × 4 mm. The subcripts ‘b’, ‘pb’, and ‘cr’
indicate bulk, pseudoboiling, and critical properties.

Fluid pb
ρpb Tpb ∆T Tbot Ttop ρb Ub

(kg/m3) (K) (K) (K) (K) (kg/m3) (m/s)

R-134a

(CH2FCF3)
1.1pcr 453.5 379.1

5 376.6 381.6 450

3610 374.1 384.1 474

20 369.1 389.1 520

the streamwise and spanwise directions and the grid is stretched in the wall-normal

direction with a hyperbolic tangent law. To guarantee feasibility of the simulations

on the finest grid and the highest temperature difference considered, where the time

step is acoustically limited to ∆t = 1.4×10−8, the bulk velocity has been set for all

cases to the relatively high value (for typical heat transfer applications) of Ub = 36

m/s corresponding to a Mach number in the low-subsonic range of Mb = 0.26 with

a range of turbulent Mach number, Mt = 0.015 (center region) ∼ 0.051 (near-wall

peak). Given the large density variation near the pseudoboiling point, buoyancy

effects may be important in the mean as well as in the turbulent quantities. In

this study, buoyancy effects are neglected in order to focus on structural changes in

compressible channel flow turbulence due to wall heat transfer in the presence of real

fluid effects.

A reference ideal gas (IG) simulation is carried out with the following nondimen-

sional parameters: ρ
(IG)
b,∗ = 1.0, p

(IG)
b,∗ = 0.71, T

(IG)
bot,∗ = 0.8, T

(IG)
top,∗ = 1.2, ∆T

(IG)
∗ = 0.4,

U
(IG)
b,∗ = Mb = 0.26, Pr = 0.7, Reτ = 367, and box size of 8×2×4. The subscript “∗”

indicates nondimensional quantities scaled with the bulk density and speed of sound

based on the centerplane temperature. Results from the IG reference case are here-

after only presented in dimensional form, rescaled based on the flow parameters of

the ∆T = 20 K transcritical case, which read ρb,20K = 520 kg/m3, Tpb = 379.1 K and
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Figure 2.4. Dynamic viscosity, µ, thermal conductivity, λ and Prandtl
number Pr for R-134a taken from the Chung’s model (—–) (see
Section §2.2); scaled dynamic viscosity and conductivity (- - -), aug-
mented by a factor of 60, used in the computations, yielding the same
Prandtl number.

Ub = 36m/s, the last two being common to all cases. The rescaling relations for the

IG data therefore read ρ
(IG)
b = ρ

(IG)
b,∗ ×ρb,20K, T (IG) = Tpb+(T

(IG)
∗ −1)×(20K/∆T

(IG)
∗ ),

U
(IG)
b = U

(IG)
b,∗ × (Ub/Mb).

To ensure the proper spatial resolution of all relevant hydro- and thermodynamic

scales, a systematic grid refinement study has been carried out (see Section §4.2.3 and

Table 4.4); this is especially important in simulations of supercritical flows in near-

critical or pseudophase transitioning conditions. The relevant metric of the degree of

spectral broadening for channel flow turbulence is the friction Reynolds number,

Reτ =
uτh

νw
(2.36)

based on the friction velocity, uτ , the channel half-height, h, and the kinematic viscos-

ity at the wall νw of the fluid. It can be viewed as the channel half-height normalized

by the viscous length scale, νw/uτ = νw/ (∂u/∂x2)x2=0, hence Reτ = h+. There-

fore, Reτ is the ratio of an integral length scale, ∼ h, to a viscous scale evaluated

at the wall. Typical practice in DNS is to adopt relatively low values of friction
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Reynolds number to enable full resolution of the relevant scales. For the present sim-

ulations, this is achieved by augmenting dynamic viscosity and thermal conductivity

by the same multiplicative factor (Figure 2.4) resulting in Reτ in the range of 342–

394 (Table 4.4). This choice leaves the Prandtl number unaltered, and reproduces the

correct trend of transport properties in the transcritical regime. The IG simulations

have been carried out at: Reτ = 462, ∆x+ = 14.44, ∆y+ = 0.48–9.10, ∆z+ = 9.62

for the bottom wall and Reτ = 271, ∆x+ = 8.47, ∆y+ = 0.28–5.36, ∆z+ = 5.64 for

the top wall.
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3 NATURAL CONVECTION PSEUDOBOILING (SETUP A)

3.1 Comparison Between Two-Dimensional and Three-Dimensional Pseu-

doboiling

In this section, an analysis on flow fields, wall heat flux, and probability distri-

bution functions (PDF) is studied by comparing the two-dimensional pseudoboiling

with the three-dimensional one.

3.1.1 Density Field and Wall Heat Flux

As a driving force of natural convection, the density difference is induced by the

wall heat flux at the bottom (or hot) and top (or cold) wall. The different temperature

condition at the walls shown in Table 2.1 stratifies the distribution of fluid properties

and increasing the difference sufficiently leads to a convection phenomenon called the

Rayleigh–Bénard convection as shown in Figure 3.1. At the relatively small temper-

ature difference such as ∆T = 1 K and 5 K, the heavy pseudoliquid layer near the

top wall is pulled down, while the light pseudogas one near the bottom wall moves

upwards by the buoyancy effect. The pseudoliquid plume departed from the top wall

is transitted to the pseudogas phase at the bottom wall by the released wall heat flux

and vice versa at the top wall. The vertical motion of plumes is interrupted by both

the horizontal walls and therefore, a sweeping flow along the walls occurs continu-

ously so that global recirculation zones are formed in the two- and three-dimensional

pseudoboiling identically. Increasing ∆T results in more accelerated recirculation by

the heavier and stronger strikes of pseudoliquid flow onto the bottom wall and the

lighter and faster movement of pseudogas plume, namely the decreased characteristic

time scale of natural convection process and the active mixing between the bottom

and top near-wall fluid. The Rayleigh number, defined as Ra = gαp∆T (2h)3ρ2cp
/
µλ
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1. Density contours of the two (left)- and three (right)-
dimensional pseudoboiling for carbon dioxide at pb = 1.1pcr and ∆T
= 1 K ((a), (b)), 5 K ((c), (d)), 20 K ((e), (f)), and 40 K ((g),
(h)). Isoline in black indicates the pseudoboiling interface at ρpb =
433 kg/m3.
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where h is the channel half-width, is dependent on the temperature difference be-

tween the walls and more local convective rolls and turbulent effect are observed as

the ∆T condition increases, without transition boiling which is one of typical pool

boiling stages, because of surface tension approaching zero in supercritical fluids (see

the two-dimensional pseudoboiling cases at ∆T = 20 K and 40 K in Figure 3.1).

Such local phenomena cause the breakup of global recirculation and strengthen the

thermal energy transfer. However, comparing to the two-dimensional pseudoboiling,

the three-dimensional case at ∆T = 20 K enables to keep the global motion relatively

due to the momentum diffusion by the fluid flow along the z direction.

In order to compare and analyze the fluctuating energy intensity and the character-

istic time scale of natural convection pseudoboiling in the two- and three-dimensional

simulations, energy spectra of fluctuating heat flux at both walls are shown in Fig-

ures 3.2 and 3.3 (Here, Hann function is used as the window function to minimize

spectral leakage which might be caused by discontinuity in the period of original sig-

nal before the discrete Fourier transform). As expected, the fluctuating intensity in-

creases in both the two- and three-dimensional simulations for all the fluids with ∆T .

Also, the energy spectra decays at higher frequency as ∆T increases meaning that the

period of primary energy-containing motion shortens. However, the two-dimensional

case for carbon dioxide at ∆T = 20 K shows anomalous behavior compared to the

other cases. Its fluctuating intensity at both walls exceeds the case at ∆T = 40 K,

expecially at the top wall, and does not decay much at high frequency in contrast with

R-134a and methanol at ∆T = 20 K. Flow fields transitional with physical time give

insight into such behavior (Figure 3.4). As time goes on, initial convection cells (also

known as Bénard cells) from both walls penetrate the recirculation zone and shear

force between the pseudoliquid and pseudogas results in locally small circulations.

The pseudoliquid flow exhibits a mode change in an even number (10 at t = 0.35 s,

6 at t = 0.37 s, and 4 at t = 0.47 s) and eventually, the flow field is halved (top-half

pseudoliquid and bottom-half pseudogas) retaining 4 mode as observed at t = 0.52
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Figure 3.2. Energy spectra of fluctuating heat flux at the bottom
(left) and top (right) wall of the two-dimensional pseudoboiling of R-
134a (a), carbon dioxide (b), and methanol (c) at pb = 1.1pcr and ∆T
= 1 K (—–), 5 K (- - -), 20 K (- · -), and 40 K (· · · ).



www.manaraa.com

27

100 101 102

f (Hz)

10−4

10−1

102

105

108

1011

E
qq
,b
ot

100 101 102

f (Hz)

10−4

10−1

102

105

108

1011

E
qq
,t
op

Figure 3.3. Energy spectra of fluctuating heat flux at the bottom
(left) and top (right) wall of the three-dimensional pseudoboiling of
carbon dioxide at pb = 1.1pcr and ∆T = 1 K (—–), 5 K (- - -), 20 K
(- · -), and 40 K (· · · ).

s. This phenomenon is observed only in the two-dimensional simulation for carbon

dioxide which might affect the heat transfer characteristics.

Since the thermodynamic properties change rapidly across the PBL (represented

as a solid isoline in black in Figure 3.1), the temperature gradient, which affects

density and wall heat flux dominantly, is maximum at the line so that the heat

transfer is concentrated in the region between the wall and the PBL (called a thermal

conductive sublayer later). Accordingly, equivalent wall heat flux can be read as

qw,eq =
|qw,bot|+ |qw,top|

2

'

[(
λw,bot

Tw,bot−Tpb
δλ,bot

)
+
(
λw,top

Tpb−Tw,top
δλ,top

)]

2

'
(
λw,bot
δλ,bot

+
λw,top
δλ,top

)
∆T

4

(3.1)

where δλ is a thickness of the thermal conductive sublayer determined by a distance

from the wall where the root-mean-square of temperature fluctuation is maximum
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4. Density contours of the two-dimensional pseudoboiling
for carbon dioxide at pb = 1.1pcr and ∆T = 20 K (t = 0.09 s (a),
0.15 s (b), 0.24 s (c), 0.26 s (d), 0.35 s (e), 0.37 s (f), 0.47 s (g), and
0.52 s (h)). Isoline in black indicates the pseudoboiling interface at
ρpb = 433 kg/m3.
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Figure 3.5. Nonscaled (a) and scaled (b) equivalent wall heat flux of
the two (open symbol)- and three (closed symbol)-dimensional pseu-
doboiling of R-134a (#), carbon dioxide (4), and methanol (2) at pb
= 1.1pcr and ∆T = 1 K (black), 5 K (red), 20 K (yellow), and 40 K
(green).

and the subcripts ‘w’ and ‘eq’ indicate wall and equivalent quantities. Reorganizing

Equation (3.1) yields

∆T ' 4qw,eq
λw,bot
δλ,bot

+ λw,top
δλ,top

(3.2)

If ∆T is scaled by Tcr and then it is represented by q̂w,eq, the scaled equivalent wall

heat flux reads

q̂w,eq =
∆T

Tcr
' 4qw,eq

Tcr

(
λw,bot
δλ,bot

+ λw,top
δλ,top

) (3.3)

The equivalent wall heat flux using thermodynamic properties averaged on the xz

plane (along the x direction for the two-dimensional cases) and its scaled quantity

at the different ∆T conditions for R-134a, carbon dioxide, and methanol are shown

in Figure 3.5. Except for the two-dimensional case of carbon dioxide at ∆T = 20

K, the equivalent wall heat flux increases monotonically (in a logarithmic scale) as

∆T increases for all the fluids and the three-dimensional carbon dioxide case exhibits
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higher heat flux compared to the two-dimensional one. From the viewpoint of the

fluid type, heat flux of methanol keeps the highest value until ∆T = 20 K, whereas

carbon dioxide surpasses at ∆T = 40 K. The distribution of scaled equivalent wall heat

flux shows good agreement, and hence meaning that the scaling by Equation (3.3)

is proper in this natural convection pseudoboiling. However, the two-dimensional

carbon dioxide simulation at ∆T = 20 K does not follow the equation and show the

exceptional high value due to its high heat flux in the nonscaled equivalent wall heat

flux and broadened thermal conductive sublayer observed in Figure 3.4(h) (recall that

δλ is included in Equation (3.3)).

3.1.2 Heat Transfer Correlation

While various heat transfer correlation models have been proposed for forced/natural

convection circulation systems in supercritical fluids, one for the present type of natu-

ral convection pseudoboiling has not been studied thoroughly. In order to investigate

the heat transfer correlation in natural convection, considering the buoyancy effect

is essential so that the Nusselt number is represented as a function of the Rayleigh

number (or the product of the Grashof number and the Prandtl number, GrPr) [31].

Also, recent studies on supercritical forced convection by Bae & Kim [28] and Mokry

et al. [29] included the density-induced effect in their correlation model. In this

study, transport properties are considered as well as density, since dynamic viscos-

ity and thermal conductivity affect the thermodynamic behavior significantly in the

transcritical temperature regime and consequently, the heat transfer correlation reads

Nu = aGr
b
Pr

c
(
ρw
ρ

)d(
µw
µ

)e(
λw

λ

)f
=
(
GrPr

)∗
(3.4)

where a, b, c, d, e, and f are coefficients satisfying the heat transfer characteristics

at the bottom and top walls respectively. The mean quantities are evaluated by
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Figure 3.6. Mean Nu versus GrPr (a) and their heat transfer corre-
lation (b) at the bottom (left) and top (right) wall of the two (open
symbol)- and three (closed symbol)-dimensional pseudoboiling of R-
134a (#), carbon dioxide (4), and methanol (2) at pb = 1.1pcr and
∆T = 1 K (black), 5 K (red), 20 K (yellow), and 40 K (green).

Q =
∫ h
0
Q(y)dy

/
h where Q is an arbitrary quantity. The local Nusselt, Grashof, and

Prandtl numbers are defined as

Nu(y) =
q(y)y

(Tw − Tb)λ(y)
(3.5)

Gr(y) =
gαp(y)(Tw − Tb)y3ρ(y)2

µ(y)2
(3.6)
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Table 3.1. Coefficients for the heat transfer correlation at the bottom
and top wall.

a b c d e f

Bot 8.273× 10−4 8.811× 10−1 −1.871 −1.709 2.673× 101 −1.436× 101

Top 2.734× 10−2 7.353× 10−1 −2.679 −3.897 −1.199× 101 1.216× 101

Pr(y) =
cp(y)µ(y)

λ(y)
(3.7)

where Tb is the surrounding bulk flow temperature, Tb =
∫
A
ρvcpTdA

/ ∫
A
ρvcpdA.

In Figure 3.6, the values of GrPr (or Ra) for all the fluids are scattered in a

significantly wide range (105 ∼ 1010 at the bottom wall and 105 ∼ 2 × 108 at the

top wall, approximately), especially at the bottom wall where the pseudogas phase

is dominant. Such a wide distribution clusters by using Equation (3.4) with the

coefficients, a–f , proposed by nonlinear least squares curve fitting (see Table 3.1)

and the model shows good agreement with Nu at both walls, although several data

deviate from the ±25% reference lines.

3.1.3 Probability Distribution Functions

Figure 3.7 presents the PDF of the two- and three-dimensional cases for carbon

dioxide conditional to a density range centered about its PBP. At ∆T = 1 K, both

the two- and three-dimensional simulations show a flat distribution meaning that

the pseudotransition occurs in most of the region between the walls since the ∆T

range is very narrow. As ∆T increases, while the two-dimensional case exhibits the

center-dominant pseudotransition (y ' 0, namely the plume-based transition), the

three-dimensional one inclines towards the top wall and it forms two peaks near the

walls at ∆T = 20 K. Those two peaks imply the active near-wall heat transfer. Such

trend is broken at ∆T = 40 K having a bottom wall inclined distribution which results

in its distortion, yet not the near-wall region. This breakup occurs at the lower ∆T
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Figure 3.7. Conditional PDF of y/h values of the two (- - -, M)- and
three (—–, N)-dimensional pseudoboiling of carbon dioxide at pb =
1.1pcr and ∆T = 1 K (a), 5 K (b), 20 K (c), and 40 K (d). The PDF
is extracted in the conditional density range of |ρ− ρpb| ≤ 6.6 kg/m3

where ρpb = 432.8 kg/m3 corresponding to Tpb ± 0.1 K.

condition (∆T = 20 K) in the two-dimensional case which proves the phenomena

observed in Figure 3.1.
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3.2 Turbulent Statistics

In this section, a statistical analysis on the mean and fluctuation quantities and

energy spectra is carried out for the three-dimensional pseudoboiling of carbon diox-

ide.

3.2.1 Semi-Local Scaled Mean and Fluctuating Quantities
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Figure 3.8. Reynolds-averaged temperature (a) and density (b) scaled
by the wall quantity at the bottom (left) and top (right) wall of the
three-dimensional pseudoboiling for carbon dioxide at pb = 1.1pcr and
∆T = 1 K (black), 5 K (red), 20 K (yellow), and 40 K (green). A
semi-local scaling factor for y is shown in Table B.1 in Appendix B.

Reynolds-averaged temperature and density profiles in the bottom and top near-

wall region are shown in Figure 3.8. The profiles are scaled by each wall quantities

and the wall-normal distance, y, is done semi-locally by δ∗v = µ(y)/(ρ(y)u∗τ (y)) where

u∗τ (y) =
√
τw/ρ(y) using local quantities (see Table B.1 for the semi-local scaling
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Figure 3.9. Semi-local scaled root-mean-square of Favre fluctuating
velocity component in the x (a), y (b), and z (c) direction at the bot-
tom (left) and top (right) wall of the three-dimensional pseudoboiling
for carbon dioxide at pb = 1.1pcr and ∆T = 1 K (black), 5 K (red),
20 K (yellow), and 40 K (green). Semi-local scaling factors are shown
in Table B.1 in Appendix B.

factors) [60] (discussed in more detail in Section §4.2). As ∆T increases, large density

gradient is observed near the walls which follows the temperature profiles except for

∆T = 40 K. Although the ∆T = 40 K case reflects well the breakup of recirculation

zone shown in Figure 3.1, its profile, especially in the bottom wall region (pseudogas

phase), wiggles meaning that the thermodynamic length scale is not fully resolved in

the present grid resolution (Table 2.3). The real fluid effects induce the rapid density

change by small temperature of variation across the channel (the ratio of maximum
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Figure 3.10. Semi-local scaled root-mean-square of Reynolds fluctu-
ating temperature (a) and density (b) at the bottom (left) and top
(right) wall of the three-dimensional pseudoboiling for carbon dioxide
at pb = 1.1pcr and ∆T = 1 K (black), 5 K (red), 20 K (yellow), and
40 K (green). Semi-local scaling factors are shown in Table B.1 in
Appendix B.

rate of change in the bottom wall region at ∆T = 20 K, ∆
(
T/Tw

)
bot

: ∆ (ρ/ρw)bot =

1 : 28.758). Also, in spite of high performance of the semi-local scaling in terms of

collapsing the profiles [61–63], it does not show good agreement in this transcritical

temperature regime at supercritical pressure.

Figures 3.9 and 3.10 present the semi-local scaled root-mean-square (rms) profiles

of fluctuating hydro- and thermodynamic quantities. For three ∆T conditions, 1 K,

5 K, and 20 K, the y∗ coordinates of peaks for the x and z velocity components,

temperature, and density are located at which the gradient of mean quantities shown

in Figure 3.8 is maximum, namely occurring the pseudophase change (based on the

wall unit, y∗, the peak moves towards the channel centerplane in order of ∆T = 5

K → 1 K → 20 K in the bottom near-wall region and 1 K → 5 K → 20 K in the
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top near-wall region). The y velocity component does not show the peak, however, it

becomes maximum on the centerplane. The fluctuation of all the velocity components

increases in order of ∆T = 1 K → 20 K → 5 K in the bottom wall region and vice

versa in the top wall region. On the other hand, The fluctuation intensity of density

and temperature increases with ∆T .

3.2.2 Turbulent Structures and Energy Spectra

(a) (b)

(c) (d)

Figure 3.11. Q-criterion isosurfaces of the three-dimensional pseu-
doboiling for carbon dioxide at pb = 1.1pcr and ∆T = 1 K (Q = 6×102

1/s2) (a), 5 K (Q = 5×103 1/s2) (b), 20 K (Q = 3×104 1/s2) (c), and
40 K (Q = 7× 105 1/s2) (d). The isosurfaces are colored by density.
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Figure 3.12. One-dimensional energy spectra of Reynolds averaged
fluctuating density (Eρρ, —–), wall-normal velocity (Evv, - - -), and
temperature (ETT , - · -) and one-dimensional cospectra between the
Reynolds averaged fluctuating wall-normal velocity and temperature
(EvT , · · · ) in the x (a) and z (b) direction extracted at the top and bot-
tom near-wall peak of temperature fluctuation intensity of the three-
dimensional pseudoboiling for carbon dioxide at pb = 1.1pcr and ∆T
= 20 K.
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In order to investigate the turbulent structures (identification of vortices), the

isosurfaces of Q-criterion are presented in Figure 3.11. As ∆T increases, the rota-

tional motion is split into smaller vortex structures which accelerate the strong local

circulation in the channel as shown in Figure 3.1. However, the ∆T = 40 K case

has a numerical error due to the unresolved turbulence/thermal length scales which

require finer grid resolution than the present one.

Figure 3.12 shows one-dimensional energy spectra of fluctuating density, wall-

normal velocity, and temperature and cospectra between fluctuating wall-normal ve-

locity and temperature extracted at both temperature rms peaks for the ∆T = 20 K

case showing the physical turbulent statistics. Decaying rapidly of the energy spectra

at high wave numbers implies the suitability of the grid resolution for ∆T = 20 K.

As expected, all the spectra in both wall regions are higher in the x direction than

the z direction since the primary motion of flow is in the x and y direction.
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4 TURBULENT FORCED CONVECTION (SETUP B)

The contents of this chapter were published in the Journal of Fluid Mechanics, titled

“Pseudophase Change Effects in Turbulent Channel Flow under Transcritical Tem-

perature Conditions.”

4.1 Wall-Bounded Turbulent Flow and Real Fluid Effects

Transcritical temperature conditions at supercritical pressure have been found

to enhance heat transfer fluctuations and alter turbulence production rates in wall-

bounded flows [4]. Such deviations from ideal gas behavior are not to be confused

with real fluid effects, which refers to molecularly disassociated gases occurring in

hypersonic flows. Real fluid effects in a flat-plate turbulent boundary layer (TBL)

over a heated wall were studied by Kawai [64]; he found that the Morkovin’s hypoth-

esis [65] is not applicable in pseudophase changing conditions due to the presence

of significant density fluctuations yielding nonclassical effects in the mass flux, tur-

bulent diffusion, and pressure dilatation distributions. Patel et al. [62] numerically

and theoretically investigated the near-wall scaling laws in a turbulent channel flow

with large thermophysical property variations. They confirmed that the turbulent

flow statistics exhibit quasi-similarity based on a semi-local friction Reynolds num-

ber, Re∗τ ≡ Reτ
√

(ρ̄/ρ̄w)
/

(µ̄/µ̄w), where the overbar refers to the Reynolds averaging

and the subscript w to the averaged wall quantity. Their investigation was, however,

limited to a density ratio of ρ̄/ρ̄w = 0.4 to 1.0. From direct numerical simulations

(DNS) of a dense gas, supersonic turbulent channel flows by Sciacovelli et al. [63], it

was investigated that the transport properties are dependent on density and temper-

ature of the fluid and the speed of sound varies nonmonotonically due to dense gas

effects (or real fluid effects in this study). The dense gas effects caused that max-
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imum levels of the fluctuating density root-mean-square are located in the viscous

sublayer which is different from the ideal gas case locating in the buffer layer so that

the density fluctuations do not change the turbulent structures significantly in the

channel and the Morkovin’s hypothesis holds. Nemati et al. [66] performed DNS of

a heated turbulent pipe flow at supercritical pressure, where thermal expansion due

to a constant wall heat flux in the presence of low buoyancy effects was found to

attenuate turbulent kinetic energy (TKE); turbulence enhancement was observed for

high buoyancy cases. Pizzarelli et al. [67] studied turbulent rectangular channel flow

at supercritical pressure with high wall heat flux, finding that real fluid effects at-

tenuate heat transfer significantly at the channel corners. Compressible channel flow

simulations at supercritical pressures and transcritical temperatures by Sengupta et

al. [68] show that the cold wall region has higher density and temperature fluctuations

as well as higher coherence than the hot near-wall region. Also, the liquid-like flow

region is characterized by decreased streamwise and increased spanwise anisotropy

and vice versa in the region of gas-like behavior.

4.2 First and Second Order Statistics

In this section, a statistical analysis limited to first and second-order moments of

turbulent fluctuations in the transcritical channel flow setup of Figure 2.2 is carried

out in comparison with the IG simulations.

4.2.1 Mean Flow Quantities

Figure 4.1 shows Reynolds-averaged profiles of density, temperature, and com-

pressibility factor,

Z =
p

ρRgas T
(4.1)

where Rgas = 81.49 J/kg K is the gas constant for R-134a. The top-to-bottom density

difference (Table 4.1) of ∆ρ = 447.5 kg/m3 achieved under transcritical conditions

for ∆T = 20 K is more than twice the IG value of ∆ρIG = 213.5 kg/m3 obtained



www.manaraa.com

42

250 375 500 625 750

ρ (kg/m3)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

y
/h

367 373 379 385 391

T (K)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.15 0.25 0.35 0.45 0.55
Z

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0(a) (b) (c)

Figure 4.1. Reynolds-averaged density (a), temperature (b), and
compressibility factor (c) for pb = 1.1pcr and ∆T = 5 K (—–), 10
K (- - -), and 20 K (· · · ) and rescaled ideal gas data (•) (in Section
§2.4.2). Average location of pseudotransition for ∆T = 5 K (#), 10
K (M), and 20 K (�).

Table 4.1. Top and bottom-wall values of mean density and com-
pressibility factor and average location of pseudophase transition ypb
for various temperature conditions. With the exception of ∆T , all
values reported are a result of the calculations. ∆ρIG is obtained by
rescaling the output of the (dimensionless) reference ideal gas simu-
lation to match the flow settings of the ∆T = 20 K transcritical case
(in Section §2.4.2).

∆T (K) ρtop (kg/m3) ρbot (kg/m3) ∆ρ (kg/m3) ∆ρIG (kg/m3) Ztop Zbot ypb

5 358.3 567.7 209.4 – 0.40 0.26 −0.23h

10 318.6 635.0 316.4 – 0.45 0.23 +0.55h

20 276.1 723.6 447.5 213.5 0.51 0.21 +0.89h

for the same ∆T . Departure from the ideal gas behavior is, in fact, present in the

entire channel, with Zmax ' 0.51 achieved at the top wall in the pseudogaseous layer
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for ∆T = 20 K. As ∆T is increased, the average location of pseudotransition ypb,

where real fluid effects are expected to be the most accentuated, moves from a near-

centerplane location to the upper wall. In all cases, the transition from a seemingly

fully thermally mixed region in channel core (i.e. T (y) is relatively uniform and close

to the pseudoboiling value to a conductive sublayer region at the walls is more defined

than in the reference IG simulation. Such steep mean flow gradients sustain significant

density and enthalpy fluctuations, up to ρrms,max = 44.1 kg/m3 and hrms,max = 8.9

kJ/kg, respectively (as discussed later in Figures 4.8 and 4.9) for the ∆T = 20 K

case. The very high heat capacity of the fluid undergoing pseudophase transition, on

the other hand, limits the temperature fluctuations to Trms,max < 2 K.
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Figure 4.2. Reynolds-averaged streamwise velocity component (a)
and its wall-normal gradient (b) for pb = 1.1pcr and ∆T = 5 K (—–),
10 K (- - -), and 20 K (· · · ) and rescaled ideal gas data (•) (in Section
§2.4.2). Average location of pseudotransition for ∆T = 5 K (#), 10
K (M), and 20 K (�).
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Figure 4.3. Wall-normal gradient of Reynolds-averaged mean density
(a) and temperature (b) for pb = 1.1pcr and ∆T = 5 K (—–), 10 K
(- - -), and 20 K (· · · ) and rescaled ideal gas data (•) (in Section
§2.4.2). Average location of pseudotransition for ∆T = 5 K (#), 10
K (M), and 20 K (�).

The mean turbulent streamwise velocity profile (Figure 4.2a) becomes more asym-

metric (with a slight acceleration of the pseudogaseous layer) for increasing ∆T , with

an upwards shift in the maximum velocity location, y/h = 0.06 for ∆T = 5 K, 0.11

for ∆T = 10 K, and 0.17 for ∆T = 20 K (see inset in Figure 4.2b), following the

same trend of the pseudotransition location ypb. As a result, a larger velocity gra-

dient magnitude is found near the top wall (the magnitude ratio of top-to-bottom

velocity gradient is 1.24 for ∆T = 5 K, 1.32 for ∆T = 10 K, 1.44 for ∆T = 20 K

in Figure 4.2b). In Figure 4.3, while top-down asymmetries in the temperature gra-

dient are confined to the sublayer regions, the mean density gradient profile is more

visibly affected by the location of pseudotransition. A logarithmic increment of the

centerplane of the temperature gradient is observed as ∆T is also increased logarith-
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mically (i.e. d(∆T )/∆T = const), suggesting a linear relation between the overall

top-to-bottom equilibrium heat flux and ∆T . The latter is a surprising result given

the degree of thermodynamic and hydrodynamic nonlinearity of the problem. These

results also suggest that transcritical heat flux rates are amenable to straightforward

dimensionless scaling in similar canonical setups. This analysis, however, is out of

the scope of the current study. While the velocity gradient increase (decrease) in the

pseudogaseous (pseudoliquid) region as ∆T is increased is not as significant as the

corresponding variations in density and temperature gradients, real fluid effects are

very apparent when attempting to scale the mean velocity profiles with commonly

used scaling laws.

For all ∆T values, the mean streamwise velocity profiles are scaled following the

recently proposed approach by Trettel & Larsson [69], which accounts for the wall heat

transfer effects, with the van Driest transformation [70] and the semi-local scaling [60]

(Figure 4.4). The expressions of the three transformations considered are reported

here for convenience and completeness.

The van Driest transformation [70] is given by

u+V D =

∫ u+

0

(
ρ(y)

ρw

) 1
2

du+ (4.2)

where u+ = u(y)/uτ and the conventional set of scaling parameters reads

y+ =
y

δv
=

y

µw/(ρwuτ )
, uτ =

√
τw/ρw (4.3)

whereas, for the semi-local scaling [60], it reads

y∗ =
y

δ∗v
=

y

µ(y)/(ρ(y)u∗τ (y))
, u∗τ (y) =

√
τw/ρ(y) (4.4)

Finally, the transformation by Trettel & Larsson [69] reads

u+TL =

∫ u+

0

(
ρ(y)

ρw

) 1
2
[
1 +

1

2

1

ρ(y)

dρ(y)

dy
y − 1

µ(y)

dµ(y)

dy
y

]
du+ (4.5)

In the log-law region, the ideal gas results collapse onto the classic incompressible

law of the wall with Trettel & Larsson [69]’s transformation, for both top and bot-

tom walls; the widest spread for the ideal gas data is observed with the van Driest

transformation plotted against the semi-locally scaled wall-normal coordinate y∗.
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Figure 4.4. Mean streamwise velocity versus wall-normal coordinate
in wall units scaled based on the conventional van Driest transfor-
mation plotted against wall-normal distance in classic wall units (a)
and semi-locally scaled [60] (b), transformed based on Trettel & Lars-
son [69] (c) for pb = 1.1pcr and ∆T = 5 K (—–, thickened), 10 K
(- - -), and 20 K (· · · ); reference ideal gas data (circles); bottom wall
(blue, •) and top wall (red, ◦). Profiles of the law of the wall (u+ = y+

for the viscous sublayer; u+ = 1/κ ln y+ +C where κ = 0.41 and C =
5.2 for the log-law region) are shown with a thin solid black line for
reference.
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Figure 4.5. Semi-local friction Reynolds number at the bottom (left)
and top (right) wall for pb = 1.1pcr and ∆T = 5 K (—–), 10 K (- - -),
and 20 K (· · · ).

For the transcritical cases, the transformed top and bottom wall streamwise ve-

locity profile results in higher intercepts than the classic incompressible log-law. In

recent publications by Ma et al. [71], very large values of the transformed velocity

u+TL were observed, suggesting inadequacy of this transformation for this flow. This

issue is analyzed in more detail in Appendix B also in light of the previous com-

munication [72]. Effects of varying ∆T are visible (hence not collapsed perfectly) in

all adopted transformations. Increasing ∆T results in an enhancement of real fluids

effects (at the present conditions), yielding significant variations of the state of tur-

bulence in the wall-normal direction, analyzed below via extraction of the semi-local

friction Reynolds number, and density fluctuation intensity profiles.

Figure 4.5 shows the semi-local friction Reynolds number

Re
∗
τ = Reτ

√
ρ(y)/ρw

/
(µ(y)/µw) (4.6)
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where Reτ = ρwuτh/µw. The wall-normal y is here intended as relative to the wall

(bottom or top) under consideration. The values of Re
∗
τ in the bottom-wall viscous

sublayer are lower than those near the top wall; the opposite occurs in the respective

log-law regions. However, values of Re
∗
τ,bot in the log region are comparable across

the different ∆T considered, while Re
∗
τ,top systematically decreases in the respective

log region as ∆T increases (and as the pseudophase transitioning region of the flow

approaches the top-wall buffer layer). The overall higher sensitivity of the Re
∗
τ to the

∆T on the heated top wall is manifest in the van Driest transform velocity (Figures

4.4(a) and (b)), systematically increasing in value with ∆T for the top wall more

than the bottom wall. On the other hand, the varying ∆T cases are collapsed by the

TL transform in equal manners on both walls, despite real fluid effects being more

pronounced at the top wall (as also discussed later and illustrated in Figures 4.9 and

4.10).

4.2.2 Turbulent Fluctuation Intensities

Table 4.2. Top-to-bottom difference in root-mean-square peak val-
ues of streamwise, wall-normal and spanwise velocity components,
density, temperature, and pressure in percentage of the bottom peak
rms value.

∆T 5 K 10 K 20 K

∆(u′′rms,peak) −2.60 % −4.65 % −5.77 %

∆(v′′rms,peak) −6.69 % −11.31 % −19.74 %

∆(w′′rms,peak) −3.69 % −10.36 % −12.72 %

∆(ρ′′rms,peak) −31.71 % 3.90 % 31.84 %

∆(T ′′rms,peak) −7.27 % 13.37 % 27.47 %

∆(p′′rms,peak) −18.83 % −35.44 % −25.30 %
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Figure 4.6. Root-mean-square of streamwise (a), wall-normal (b),
and spanwise (c) Favre fluctuating velocity component and Reynolds
shear stress (d) for pb = 1.1pcr and ∆T = 5 K (—–), 10 K (- - -), and
20 K (· · · ) and rescaled ideal gas data (•) (in Section §2.4.2). Average
location of pseudotransition for ∆T = 5 K (#), 10 K (M), and 20 K
(�).

Table 4.3. Peak ranges of the root-mean-square of streamwise, wall-
normal, and spanwise Favre fluctuating velocity component and
Reynolds shear stress at the bottom and top wall and their wall-
normal location using the semi-local scaling.

(u′′rms,peak)∗ (v′′rms,peak)∗ (w′′rms,peak)∗
∣∣∣
(
ũ′′v′′peak

)∗∣∣∣

Bot
3.25–3.34 0.91–0.92 1.25–1.27 0.81–0.83

(y∗ = 17.45–18.77) (y∗ = 93.51–103.24) (y∗ = 46.07–46.55) (y∗ = 47.91–54.06)

Top
3.19–3.23 0.83–0.89 1.20–1.24 0.77–0.80

(y∗ = 16.82–17.53) (y∗ = 84.18–86.04) (y∗ = 37.70–42.14) (y∗ = 42.41–45.94)

Other real fluid effects associated with transcritical thermal conditions are ob-

servable in the variance of the hydrodynamic turbulent fluctuations, as shown in Fig-
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(a)

(b)

Figure 4.7. Semi-local scaled root-mean-square of streamwise, wall-
normal, and spanwise Favre fluctuating velocity component (a) and
Reynolds shear stress (b) at the bottom (left column) and top (right
column) wall for pb = 1.1pcr and ∆T = 5 K (—–), 10 K (- - -), and 20
K (· · · ) and rescaled ideal gas data (•) (in Section §2.4.2). Semi-local
scaling factors are shown in Table B.1 in Appendix B.

ure 4.6. As ∆T increases, the asymmetries with respect to the channel centerplane

grow, with peak fluctuation intensity values at the top wall (pseudogaseous region,

towards which the pseudotransition location migrates) are attenuated with respect to

the corresponding values in the pseudoliquid flow (see Table 4.2). This suggests the

occurrence of damping of hydrodynamic turbulence due to the proximity to the region

of pseudophase change. Such attenuation is noted in all Reynolds stress terms but is

strongest in the wall-normal velocity component, directly involved in the turbulent
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Figure 4.8. Root-mean-square of Reynolds fluctuations ((a)–(c)) and
their normalized quantities ((d)–(f)) with respect to the local mean
values for density ((a), (d)), temperature ((b), (e)), and pressure ((c),
(f)) for pb = 1.1pcr and ∆T = 5 K (—–), 10 K (- - -), and 20 K (· · · )
and rescaled ideal gas data (•) (in Section §2.4.2). Average location
of pseudotransition for ∆T = 5 K (#), 10 K (M), and 20 K (�).

heat and mass transport transport working against the steep mean temperature and

density gradient. Following Morinishi et al. [61], in Figure 4.7, we show the semi-local

scaled profiles of hydrodynamic turbulent fluctuations (see Table B.1 in Appendix B

for the semi-local scaling factors). The semi-local scaling represents well the relative

difference among the ideal gas and the real fluid cases and shows good collapse for the
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Figure 4.9. Root-mean-square of Favre fluctuations for enthalpy (a)
and wall-normal turbulent enthalpy flux (b) for pb = 1.1pcr and ∆T
= 5 K (—–), 10 K (- - -), and 20 K (· · · ). Average location of pseu-
dotransition for ∆T = 5 K (#), 10 K (M), and 20 K (�).

three ∆T conditions in terms of the peak value level and its location in the semi-local

wall unit, y∗ (see Table 4.3).

On the contrary, the proximity to the pseudophase change location ypb (locally)

and the increasing top-to-bottom temperature difference ∆T (globally) enhances the

intensity of all thermodynamic fluctuations (Figures 4.8 and 4.9a). In spite of the

damping in the wall-normal velocity fluctuations, the wall-normal turbulent enthalpy

flux is enhanced (Figure 4.9b) by the increasing ∆T , as expected by the statistical

steadiness of the flow, implying equilibrium conditions for the turbulent heat transfer.

For any given ∆T , the rms peak of density, temperature, and enthalpy closer

to the location of pseudophase transition ypb has a higher value than the other one

farther away. Such asymmetry is quantified in Table 4.2. As ypb moves upwards for

increasing ∆T , it approaches the peak of the shear Reynolds stress and enthalpy flux

(Figure 4.9b), only significantly increasing the latter roughly proportionally to ∆T .
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Figure 4.10. Semi-local scaled root-mean-square of Reynolds fluctu-
ating density at the bottom (left) and top (right) wall for pb = 1.1pcr
and ∆T = 5 K (—–), 10 K (- - -), and 20 K (· · · ) and rescaled ideal
gas data (•) (in Section §2.4.2). Semi-local scaling factors are shown
in Table B.1 in Appendix B.

The density fluctuation intensity normalized by its mean local value shown in Fig-

ure 4.8 is significantly higher than the temperature fluctuation (for the ∆T = 20 K,

(ρ′rms/ρ)max ' 26× (T ′rms/T )max). These real fluid effects have a direct impact on the

structure of near-wall turbulence. In ideal gas cases, such as Coleman et al. [73]’s com-

pressible isothermal wall channel flow, density and temperature fluctuations, scaled

by their mean values, are almost identical to each other (see Figure 10 in Coleman et

al. [73]). Previous calculations involving dense gases in a supersonic channel flow by

Sciacovelli et al. [63] observed the maximum density fluctuation intensity located in

the viscous sublayer and, as such, it was argued that it did not alter the turbulence

structure significantly while satisfying Morkovin’s hypothesis. In the present results,

the ρ′rms peak is located in the buffer layer, and much more pronounced at the top

wall (where real fluid effects become more concentrated as ∆T increases) therein con-

tributing to the inhomogeneity of the state of turbulence, as discussed earlier in the
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analysis of the semi-local friction Reynolds number (Figure 4.5). The bottom and

top near-wall peaks of ρ′rms based on the semi-local scaling for the ∆T conditions in

this study are located in y∗ = 7–13 approximately corresponding to the buffer layer

and the location moves slightly towards the channel centerplane with increasing ∆T

(see Figure 4.10).

4.2.3 Grid Convergence Study
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Figure 4.11. Root-mean-square of streamwise (a), wall-normal (b),
and spanwise (c) Favre fluctuating velocity component and Reynolds
shear stress (d) for pb = 1.1pcr and ∆T = 20 K at grid resolu-
tion of 64×96×64 (· · · ), 128×128×96 (- · -), 192×128×128 (- - -),
384×256×256 (– –), and 512×256×256 (—–).

Grid convergence of transcritical flows is essential to determine the adequacy of

a DNS as we recall that the minimal thermodynamic length scale to be resolved in

transcritical flows is typically smaller than the Kolmogorov length scale. Insufficient

spatial resolution is typically evidenced by a large spectral pile-up in the thermody-



www.manaraa.com

55

Table 4.4. Friction Reynolds number and grid resolution in wall units
(uτ/ν)−1 for the bottom and top portion of the channel evaluated with
respective wall quantities. See also Table 2.4.

Nx×Ny×Nz 64×96×64 128×128×96 192×128×128 384×256×256 512×256×256

∆T = 5 K, ρb = 450 kg/m3

pb 44.64 bar 44.65 bar 44.67 bar 44.66 bar 44.67 bar

Bottom

Reτ 360 340 345 370 372

∆x+ 67.50 31.88 21.56 11.56 8.72

∆y+ 0.41–16.75 0.40–11.03 0.40–11.15 0.39–5.09 0.38–5.06

∆z+ 22.50 14.17 10.78 5.78 5.81

Top

Reτ 375 355 360 390 394

∆x+ 70.31 33.28 22.50 12.19 9.23

∆y+ 0.43–17.43 0.41–11.50 0.42–11.68 0.41–5.36 0.40–5.34

∆z+ 23.44 14.79 11.25 6.09 6.16

∆T = 10 K, ρb = 474 kg/m3

pb 44.58 bar 44.65 bar 44.65 bar 44.67 bar 44.69 bar

Bottom

Reτ 345 325 335 365 364

∆x+ 64.69 30.47 20.94 11.41 8.53

∆y+ 0.40–16.13 0.38–10.65 0.39–10.87 0.38–4.96 0.37–4.93

∆z+ 21.56 13.54 10.47 5.70 5.69

Top

Reτ 365 345 355 385 387

∆x+ 68.44 32.34 22.19 12.03 9.07

∆y+ 0.42–16.98 0.40–11.24 0.41–11.48 0.40–5.28 0.40–5.25

∆z+ 22.81 14.38 11.09 6.02 6.05

∆T = 20 K, ρb = 520 kg/m3

pb 44.37 bar 44.43 bar 44.42 bar 44.55 bar 44.67 bar

Bottom

Reτ 320 310 315 345 342

∆x+ 60.00 29.06 19.69 10.78 8.02

∆y+ 0.37–15.06 0.36–10.03 0.37–10.26 0.36–4.72 0.35–4.68

∆z+ 20.00 12.92 9.84 5.39 5.34

Top

Reτ 340 330 335 375 377

∆x+ 63.75 30.94 20.94 11.72 8.84

∆y+ 0.39–15.89 0.39–10.75 0.39–10.91 0.39–5.10 0.39–5.10

∆z+ 21.25 13.75 10.47 5.86 5.89

namic quantities; in which case, the obtained results should be considered erroneous.

In order to resolve the numerical error, we have used the top-hat filter with filtering

factors as shown in Table 4.5. Here, the grid sensitivity is investigated for the most

critical case of ∆T = 20 K. Figure 4.11 shows the grid sensitivity of the velocity rms.



www.manaraa.com

56

Table 4.5. Filtering factors used in the top-hat filter.

Nx×Ny×Nz

Index

i, j, or k − 1 i, j, or k i, j, or k + 1

64×96×64 0.00005 0.99990 0.00005

128×128×96 0.00015 0.99970 0.00015

192×128×128 0.00025 0.99950 0.00025

384×256×256 0.00045 0.99910 0.00045

512×256×256 0.00055 0.99890 0.00055
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Figure 4.12. Root-mean-square of Reynolds fluctuations for den-
sity (a), temperature (b), and pressure (c) for pb = 1.1pcr and ∆T
= 20 K at grid resolution of 64×96×64 (· · · ), 128×128×96 (- · -),
192×128×128 (- - -), 384×256×256 (– –), and 512×256×256 (—–).

We highlight the insensitivity of the streamwise fluctuations to the grid resolution,

whereas an unresolved simulation underestimates the peak fluctuations in the span-
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Figure 4.13. Root-mean-square of Favre fluctuations for enthalpy
(a) and wall-normal turbulent enthalpy flux (b) for pb = 1.1pcr and
∆T = 20 K at grid resolution of 64×96×64 (· · · ), 128×128×96 (- · -),
192×128×128 (- - -), 384×256×256 (– –), and 512×256×256 (—–).

wise and wall normal velocity components. The overall trends of the rms profiles

(asymmetry, relative peak height etc.) are independent of the grid resolution.

The grid sensitivity of thermodynamic fluctuations is shown in Figures 4.12 and

4.13. We note a slow convergence of the thermodynamic quantities, particularly for

the pressure. Figure 4.13 shows that the fluctuating enthalpy rms is well captured

on a coarse mesh. But the turbulent enthalpy flux, an important quantity for the

characterization of the convective heat transfer, requires a large grid count for a

correct estimation. An insufficient grid resolution will underestimate the magnitude

of the turbulence effect on the heat transfer in this transcritical system.

The one-dimensional energy spectra of fluctuating density, wall-normal velocity,

and temperature in the streamwise and spanwise directions are presented in Fig-

ure 4.14. The profiles are extracted at y/h = −0.97, 0, and 0.97 which correspond

to the location of the thermodynamic rms peaks (bottom and top wall) and the
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(a) (b)

Figure 4.14. One-dimensional energy spectra of Reynolds averaged
fluctuating density (top), wall-normal velocity (middle), and temper-
ature (bottom) in the streamwise (a) and spanwise (b) directions ex-
tracted at the two near-wall peaks of density fluctuation intensity
(y/h = ±0.97) and the centerplane (y/h = 0) for pb = 1.1pcr and
∆T = 20 K at grid resolution of 64×96×64 (· · · ), 128×128×96 (- · -),
192×128×128 (- - -), 384×256×256 (– –), and 512×256×256 (—–).
Spectra for the centerplane and the top wall data have been shifted
vertically by 3 decades and 6 decades respectively for clarity.
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Figure 4.15. Normalized average Kolmogorov length scales, ηK/∆x
(a), ηK/∆y (b), and ηK/∆z (c), at pb = 1.1pcr and ∆T = 20 K at
grid resolution of 64×96×64 (· · · ), 128×128×96 (- · -), 192×128×128
(- - -), 384×256×256 (– –), and 512×256×256 (—–).

centerplane. As the grid resolution increases, the spectral broadening is observed

with a slight increase at the high wavenumbers. Also, as expected, a build-up at

high wavenumbers in the energy spectra is observed due to the higher sensitivity to

inadequate spatial resolution due to the coupling of conservative compressible meth-

ods with cubic equations of state. The latter were mitigated by adopting a higher

numerical resolution than what normally required for the given Reynolds number.

Figure 4.15 presents the average profiles of the normalized Kolmogorov length scale

in the streamwise, wall-normal, and spanwise directions. The Kolmogorov scale, ηK ,

which quantifies the smallest turbulence length scale, is defined as

ηK ≡
(
ν3

ε

)1/4

(4.7)
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where ε represents the dissipation rate of TKE per unit mass. For compressible flows,

ε is defined as

ε ≡ 1

ρ
τij
∂u′′i
∂xj

(4.8)

The profiles of the normalized Kolmogorov length scale approach unity as the grid

resolution increases. It is observed that the flow in liquid-like phase needs a finer grid

than that in the gas-like phase to resolve the turbulence length scale, which is a result

of the larger density at the cooled wall. These figures show adequate grid resolution

in the wall-normal direction, especially near the walls. This study also highlights the

importance of a sufficient resolution in the streamwise direction as well.



www.manaraa.com

61

4.3 High-Order Statistics, Probability Distribution Functions, and Tur-

bulent Spectra
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Figure 4.16. Skewness of the streamwise (a) and wall-normal (b)
velocity component, density (c), and temperature (d) for pb = 1.1pcr
and ∆T = 5 K (—–), 10 K (- - -), and 20 K (· · · ) and rescaled ideal
gas data (•) (in Section §2.4.2). Average location of pseudotransition
for ∆T = 5 K (#), 10 K (M), and 20 K (�).

The skewness of the fluctuating turbulent and thermodynamic quantities are pre-

sented in Figure 4.16. The high-order moments of the velocity fluctuations are, for

the most part, unaffected by real fluid effects, although a more negative skewness of

the streamwise velocity fluctuations is observed compared to ideal gas computations.

The more noticeable difference is in the magnitude and sign of the skewness of density

and temperature in the buffer layer regions; here the skewness of ideal gas density

fluctuations approaches near zero values, while for the real fluid case it reaches an

absolute maximum and with opposite sign with respect to the ideal gas case.
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Figure 4.17. Contour of PDF of total density and the average location
of pseudotransition, y = ypb, pseudoboiling density value ρ = ρpb (– –)
for pb = 1.1pcr and ∆T = 5 K (a), 10 K (b), and 20 K (c). The solid
black line corresponds to the isocontour level PDFρ = 10−3. Note that
the plot extremes on the horizontal axis are increased for increasing
∆T .

The positive peak in density skewness at the bottom wall is the result of intermit-

tent events (discussed in more detail in Section §4.4), which eject dense fluid from the

pseudoliquid sublayer into the channel core kept in pseudoboiling conditions. Same

considerations hold for the top wall, but in reverse, justifying the negative skewness

peak of density observed there. No similar structure is observed in the skewness pro-

files of the ideal gas case. The skewness of temperature follows a specular pattern

with respect to density, suggesting that fluctuations in pressure might not play a

dominant role in the mass and momentum transport.

To gain more insight into the structure of thermodynamic fluctuations, the PDF of

density and temperature have been extracted at all locations (Figures 4.17 and 4.18).

The PDFs widen as ∆T increases, as expected. Confirming previous observations,

the largest variance is observed when pseudotransition takes place in the turbulent

buffer layer, occurring at the top wall buffer layer for ∆T = 20 K. While the variance

of the turbulent velocity fluctuations decreases with increasing ∆T , the broader PDF
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Figure 4.18. Contour of PDF of total temperature and the average
location of pseudotransition, y = ypb, pseudoboiling density value
ρ = ρpb (– –) for pb = 1.1pcr and ∆T = 5 K (a), 10 K (b), and
20 K (c). The solid black line corresponds to the isocontour level
PDFρ = 10−3. Note that the plot extremes on the horizontal axis are
increased for increasing ∆T .

of thermodynamic fluctuations is associated with the steepening of the corresponding

gradients (Figure 4.3).

The analysis in Figures 4.19 and 4.20 focuses on three locations: the two buffer

layers and the pseudophase transitioning location and includes a comparison with the

ideal gas data. For both density and temperature, it is observed that the pseudophase

transitioning region exhibits are much narrower distribution of the PDFs, whereas the

buffer layers display a very pronounced kurtosis, with very rapid roll off at the tails

of the distribution. Such PDF with very high kurtosis is not observed in the density

PDF of the ideal gas case, while it is for the temperature PDF (see Table 4.6 for

details).
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Figure 4.19. Probability distribution function (PDF) of fluctuating
density at the bottom (—–, •) and top (- - -, ◦) locations of peak ρrms
and at the average location of pseudotransition y = ypb (· · · ) for pb =
1.1pcr and ∆T = 5 K (a), 10 K (b), and 20 K (c) and rescaled ideal
gas data (circles) (in Section §2.4.2). Note that the plot extremes on
the horizontal axis are increased for increasing ∆T .
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Figure 4.20. Probability distribution function (PDF) of fluctuating
temperature at the bottom (—–, •) and top (- - -, ◦) locations of peak
Trms and at the average location of pseudotransition y = ypb (· · · ) for
pb = 1.1pcr and ∆T = 5 K (a), 10 K (b), and 20 K (c) and rescaled
ideal gas data (circles) (in Section §2.4.2). Note that the plot extremes
on the horizontal axis are increased for increasing ∆T .
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Table 4.6. Minimum and maximum values of fluctuating density and
temperature at the approximate bottom wall (y ' −0.97h) and top
wall (y ' 0.97h) rms peak locations and at the average location of
pseudotransition, y = ypb.

∆T (K) 5 10 20

y = −0.97h

ρ′min (kg/m3) −49.58 −67.58 −101.55

ρ′max (kg/m3) 53.33 65.93 81.23

T ′min (K) −1.18 −2.07 −4.03

T ′max (K) 1.13 1.56 3.34

y = 0.97h

ρ′min (kg/m3) −37.76 −59.18 −91.68

ρ′max (kg/m3) 41.11 90.18 148.37

T ′min (K) −1.04 −1.83 −3.35

T ′max (K) 1.24 2.51 5.39

y = ypb

ρ′min (kg/m3) −23.36 −42.69 −124.41

ρ′max (kg/m3) 20.26 41.93 94.67

T ′min (K) −0.38 −0.73 −1.88

T ′max (K) 0.44 0.83 4.06



www.manaraa.com

66

−1.0 −0.5 0.0 0.5 1.0

y/h

10−4

10−3

10−2

10−1

100

101

102

103

104

P
D

F
ρ

(a)

−1.0 −0.5 0.0 0.5 1.0

y/h

100

101

102

103

104

P
D

F
Q

(b)

Figure 4.21. PDF of y/h values conditional to |ρ− ρpb| ≤ 5.9 kg/m3

where ρpb = 453.5 kg/m3 corresponding to Tpb ± 0.1 K (a) and Q =
2.49 × 109–2.51 × 109 1/s2 (b) with average locations of the pseudo-
transition for pb = 1.1pcr and ∆T = 5 K (—–, #), 10 K (- - -, M), and
20 K (· · · , �).

(a) (b)

Figure 4.22. Isosurfaces of Q-criterion at Q = 2.5× 109 1/s2 (a) and
0.5× 109 1/s2 (b) colored by the wall-normal velocity for pb = 1.1pcr
and ∆T = 20 K.
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Figure 4.21a presents the PDF conditioned to a density range centered about its

pseudotransitioning value. These results provide the probability of an instantaneous

pseudophase change event at a given y location, or equivalently, the probability of the

pseudointerface being instantaneously located at a given y location. The location cor-

responding to the highest event count moves upwards in the channel as ∆T increases

and the distribution is narrowed; y/h = −0.17 for ∆T = 5 K, 0.78 for ∆T = 10 K,

and 0.93 for ∆T = 20 K. However, these values do not exactly match the average

pseudotransition locations determined by the mean quantities (shown in Figure 4.1

and indicated with symbols in Figure 4.21), especially for ∆T = 10 K. As a result,

despite having a mean pseudotransition location at ypb/h = 0.55 in the ∆T = 10 K

case, the greatest probability is much closer to the top wall, at about y/h = 0.8−0.9.

A coherent-structure-based probability distribution is also extracted (Figure 4.21b).

Conditioning the PDF on a selected Q-criteria value (Q = 2.49× 109–2.51× 109 1/s2

as used in Figures 4.22a and 4.25b), allows to identify the effects of increasing ∆T on

the structural make-up of turbulence under transcritical conditions. In line with the

observed turbulence damping in the vicinity of pseudotransition conditions, a reduc-

tion of the population density of turbulent structures in the top half of the channel

is observed with increasing ∆T . As quantitatively shown by the reduction in the

number of observed events in the conditional statistics in Figure 4.21b. This effect is

observed for several values of the Q-criterion (Figure 4.22) and is consistent with the

increasing asymmetry in the turbulent velocity profiles for increasing ∆T as shown

in Figure 4.6.

Figure 4.23 shows one-dimensional energy spectra of fluctuating density, wall-

normal velocity, and temperature and cospectra of fluctuating wall-normal velocity

and temperature in the near-wall regions, which are heavily affected by the wall-

generated turbulence. All the profiles roll off rapidly at high wavenumbers; providing

further evidence of the adequacy of the resolution of both the hydrodynamic and ther-

modynamic quantities. The cospectrum of the wall-normal velocity and temperature

fluctuations, EvT , is also analyzed here to gain insight into the fundamental nature
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(a) (b)

Figure 4.23. One-dimensional energy spectra of Reynolds averaged
fluctuating density (first row), wall-normal velocity (second row), and
temperature (third row) and one-dimensional cospectra between the
Reynolds averaged fluctuating wall-normal velocity and temperature
(fourth row) in the streamwise (a) and spanwise (b) direction ex-
tracted at the two near-wall peaks of density fluctuation intensity
(y/h = ±0.97) for pb = 1.1pcr and ∆T = 5 K (—–), 10 K (- - -), and
20 K (· · · ). Spectra for the top wall data have been shifted vertically
by 2 decades for clarity.
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Figure 4.24. One-dimensional coherence between the Reynolds aver-
aged fluctuating wall-normal velocity and temperature in the stream-
wise (a) and spanwise (b) direction extracted at the two near-wall
peaks of density fluctuation intensity (y/h = ±0.97) and the average
location of the pseudotransition based on the mean quantities for pb
= 1.1pcr and ∆T = 5 K (—–), 10 K (- - -), and 20 K (· · · ). Coherence
for the pseudotransition and the top near-wall peak data have been
shifted vertically by 0.5 and 1.0 respectively for clarity.

of their interaction. Its value increases with ∆T , as expected, given the increase of

the wall-to-wall heat flux. Normalizing the cospectrum based on the single-variable

spectra (Figure 4.24) reveals an unexpected loss of transport efficiency, or coherence,

at the pseudophase changing location for intermediate wave numbers as ∆T is in-

creased; this is observed for both the streamwise and spanwise directions. Overall,

the hydrodynamic and thermodynamic effects are highly correlated at or around the

energy-containing turbulent length scale.

4.4 Coherent Structures and Thermodynamics

Instantaneous isosurfaces of density and Q-criterion as well as corresponding

flooded contours of wall heat flux are shown in Figure 4.25, for the bottom-wall

only, to investigate the coupling between heat and mass transfer effects and the role

coherent turbulent structures in the transport. The density isosurface at ρ = 468
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Figure 4.25. Isosurfaces of density (ρ = 468 kg/m3) colored by the
distance from the bottom wall (a), Q-criterion (Q = 2.5 × 109 1/s2)
colored by the wall-normal velocity (b), and temperature gradient (c)
for pb = 1.1pcr and ∆T = 5 K (enhanced online – https://www.

youtube.com/embed/JqF_ZrucSqs).

kg/m3 (value which corresponds to y/h = −0.9 in the mean density profile shown in

Figure 4.1) exhibits clear ejection events from the pseudoliquid region (near the cold,

bottom wall) as the near-wall turbulence lifts-up the dense fluid into the lighter core of

the channel. As the ejected fluid has more inertia than its lighter surrounding, and no

gravitational effects are accounted for in these simulations, it reaches the core of the
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channel (y/h = 0, see red-colored surfaces) where the fluid undergoes a pseudophase

change, effectively achieving mass transport. Naturally, the gravitational forces (in

a stably stratified flow setup) would play a mitigating role in the observed mixing

dynamics. This pseudophase change and the concomitant effects on the thermody-

namics are a unique characteristic of transcritical flows and explain the high positive

values of skewness of density (Figure 4.16) in the bottom-half of the channel.

The Q-criterion isosurface identifies the turbulent structures based on the velocity

gradients alone. Interestingly, large-scale streamwise aligned structures are observed

near the wall (see the circles), leading to the choice of a long computational domain

length in the streamwise direction, 12 times the half-channel width, approximately

twice the typical length required by the current friction Reynolds number (see Table

4.4). Figure 4.25c shows the corresponding elongated streaks in the wall-heat flux,

spatially correlated with the ejection locations caused by the streamwise-elongated

turbulent structures.

Two-point velocity correlations in the streamwise and spanwise direction (Fig-

ure 4.26) are extracted to confirm that, indeed, the computational box size has been

adequately picked. A large streamwise and small spanwise coherence is observed near

the top and bottom wall, confirming the visual observation of the narrow elongated

streaks from Figure 4.25. We note a much longer streamwise correlation length in

the u velocity (correlation reaches zero at about 0.15 rx/Lx) than in w (reaches zero

at about 0.05 rx/Lx). The lateral two-point correlation are consistent with the lon-

gitudinal ones and the three-dimensional visualizations. The signature of streamwise

aligned streaks result in a short spanwise correlation length near the walls.

In the center of the channel, turbulence is nearly isotropic, a fact observed from the

integral length scale analysis. The integral length scale (not shown) at the channel

center is about 9% of the width. The integral length scales relative to the local

Kolmogorov scale are presented in Figure 4.27, once again, revealing the remarkably

extended correlation length of the near wall structures.
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Figure 4.26. Normalized longitudinal (top) and lateral (bottom) two-
point correlations of velocity in the streamwise (a) and spanwise (b)
direction extracted at y/h = −0.97, −0.75, −0.50, −0.25, 0.00, 0.25,
0.50, 0.75, and 0.97 for pb = 1.1pcr and ∆T = 5 K (—–), 10 K (- - -),
and 20 K (· · · ). The lines have been shifted vertically corresponding
to each y/h from bottom to top. Average location of first zero-crossing
points for ∆T = 5 K, 10 K, and 20 K ( ).
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Figure 4.27. Ratio of the integral length scale (longitudinal (top) and
lateral (bottom)) and the local Kolmogorov scale in the streamwise
(a) and spanwise (b) direction. ∆T = 5 K (—–), 10 K (- - -), and 20
K (· · · ).

In addition to the hydrodynamic correlations, thermodynamic two-point correla-

tions are presented in Figure 4.28. The two-point correlations for density and com-

pressibility factor reflect the real fluid characteristics discussed in Figure 4.8. The

correlations have the identical tendency showing the long streamwise and short span-

wise correlation lengths near the walls and vice versa in the center region. The large

streamwise coherence near the walls accords with the manifestation of pseudoliquid

flow streaks observed in Figure 4.25. These longer streaky structures are also ob-

served in variable density, supersonic wall-bounded flows with cooled walls [73]. As

the fluctuating density is enhanced (see Figure 4.10), so is the momentum transfer in
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Figure 4.28. Normalized two-point correlations of density (top) and
compressibility factor (bottom) in the streamwise (a) and spanwise (b)
direction extracted at y/h = −0.97, −0.75, −0.50, −0.25, 0.00, 0.25,
0.50, 0.75, and 0.97 for pb = 1.1pcr and ∆T = 5 K (—–), 10 K (- - -),
and 20 K (· · · ). The lines have been shifted vertically corresponding
to each y/h from bottom to top. Average location of first zero-crossing
points for ∆T = 5 K, 10 K, and 20 K ( ).
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the wall normal. As a result, the higher momentum particles travel a longer distance,

imparting an enhanced streaky-structure to the near wall flow. The flow ejected from

the walls in long streamwise streaks eventually take on a blob-like (shorter streamwise,

longer spanwise structure) form as the ejected fluid reaches the channel centerplane.

The strong similarity between all ∆T conditions is noted.
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5 CONCLUSIONS

We have performed direct numerical simulations of natural and forced convection

with differentially heated walls (∆T equals Tbot − Ttop for natural convection pseu-

doboiling and Ttop−Tbot for turbulent forced convection) bracketing the pseudoboiling

temperature at a slightly supercritical pressure in order to investigate their turbulent

structures and heat transfer dynamics. R-134a (also called 1,1,1,2-tetrafluoroethane,

CH2FCF3), carbon dioxide (CO2), and methanol (CH3OH) are used as the work-

ing fluid (only R-134a for forced convection). By defining a statistically steady flow

at transcritical temperature conditions, the turbulence and thermodynamic coupling

could be studied. The simulations were conducted by solving the fully compressible

Navier–Stokes equations and special attention was paid to fully resolving all scales of

the hydro- and thermodynamics of the setup to avoid nonphysical oscillations which

are characteristic of these flows. The Peng–Robinson equation of state was used with

a consistent thermodynamic formulation to investigate the real fluid effects. A real-

istic Prandtl number is used and computed from the Chung’s model to estimate the

dynamic viscosity and thermal conductivity.

The natural convection pseudoboiling study expiscated that increasing tempera-

ture difference between the walls enables to shorten the period of recirculation occured

by the buoyancy effect and enhance the flow mixing and heat transfer. The two-

dimensional simulation of carbon dioxide at ∆T = 20 K results in the even-numbered

mode change in the pseudoliquid region. The equivalent wall heat flux increases loga-

rithmically with ∆T and the scaled equivalent wall heat flux introducing the thermal

conductive sublayer thickness shows good agreement except for the two-dimensional

carbon dioxide case. The proposed heat transfer correlation model considering Gr,

Pr, density, and transport properties is proper (roughly) to characterize the super-

critical natural convection. The conditioned probability distribution function proves
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the breakup of global recirculation zone observed in the instantaneous flow fields by

increasing ∆T . The analysis on turbulent statistics shows that the real fluid effects

result in the large gradient of thermodynamic quantities at the location occuring the

pseudophase change and the higher ∆T condition needs finer grid resolution in order

to capture the turbulence length scales fully.

In the turbulent forced convection study, by varying the differential heating of the

channel walls, the average location of the pseudophase change could be controlled,

varying from y/h = −0.23, 0.55, and 0.89 for ∆T = 5 K, 10 K, and 20 K, respectively.

At the pseudophase change, the thermodynamic nonlinearity are maximal, therefore

the resulting effects of the thermodynamic nonlinearities on turbulence could be in-

vestigated. Conventional near-wall velocity scaling laws cannot capture the velocity

distribution in transcritical flows due to the large density and thermophysical varia-

tions; even recent improvements to scaling laws for heated and cooled walls cannot

accurately capture these effects. This leads us to conclude that additional wall mod-

eling for transcritical flow is essential to correctly capture the near-wall dynamics of

transcritical flows. One justification for the near-wall modeling challenges stems from

nonlinear thermodynamic effects in the wall turbulence. The real fluid thermody-

namic effects inhibit hydrodynamic turbulence through a decrease in the dilatational

production term of the enstrophy equation (not shown). The profiles of the thermo-

dynamic fluctuations show a higher intensity in the pseudogas (hot wall) compared to

the pseudoliquid (cold wall) region; this occurs despite a reduction in the turbulence

intensity near the top wall. The conditional probability distribution function of den-

sity shows a narrowing of the distribution with increasing differential heating. When

the pseudophase change occurs near the wall (∆T = 20 K case), a highly skewed and

very narrow distribution is observed, which results from the nonlinear dynamics as

the pseudophase change occurs near the viscous sublayer. The structural signature

of the turbulence in transcritical flows remains the most striking. Near the wall, the

turbulence is aligned in long, yet meandering, streamwise coherent structures and the

integral length scales are over 400 times the local Kolmogorov scale. The instanta-
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neous visualizations and the two-point correlations have shown that strong ejections

of heavy fluid into the channel core affect the structures and dynamics of turbulent

channel flow and leave streaks in the temperature gradients at the wall.
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A COMPARISON OF THERMODYNAMIC AND TRANSPORT PROPERTIES

OF REAL FLUIDS
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Figure A.1. Thermodynamic properties of R-134a predicted by the
PR EoS and the Chung’s model (lines) and the NIST data (symbols)
at various pressure conditions (—– #, pcr = 40.590 bar; - - - 4, 1.1pcr
= 44.649 bar; - · - �, 1.2pcr = 48.708 bar) I. (a) Density ( critical
point). (b) Speed of sound. (c) Heat capacity at constant volume. (d)
Heat capacity at constant pressure. (e) Internal energy. (f ) Enthalpy.



www.manaraa.com

85

325 345 365 385 405 425
0

533

1067

1600

µ
(µ

P
)

(a)

325 345 365 385 405 425
0

30

60

90

λ
(m

W
/m
·K

)

(b)

325 345 365 385 405 425

T (K)

0

12

24

36

γ

(c)

325 345 365 385 405 425

T (K)

0

12

24

36
P
r

(d)

Figure A.2. Thermodynamic properties of R-134a predicted by the
PR EoS and the Chung’s model (lines) and the NIST data (symbols)
at various pressure conditions (—– #, pcr = 40.590 bar; - - - 4, 1.1pcr
= 44.649 bar; -·- �, 1.2pcr = 48.708 bar) II. (a) Dynamic viscosity. (b)
Thermal conductivity. (c) Specific heat ratio. (d) Prandtl number.
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Figure A.3. Thermodynamic properties of R-134a (#), carbon diox-
ide (4), and methanol (2) predicted by the PR EoS and the Chung’s
model at pb = 1.1pcr and ∆T = 1 K (black), 5 K (red), 20 K (yellow),
and 40 K (green). (a) Density. (b) Isobaric thermal expantion coef-
ficient. (c) Heat capacity at constant volume. (d) Heat capacity at
constant pressure. (e) Dynamic viscosity. (f) Thermal conductivity.
(g) Specific heat ratio. (h) Prandtl number.
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B CONSIDERATIONS ON THE TRANSFORMATION BY TRETTEL &

LARSSON

Table B.1. Semi-local scaling factors where u∗τ (y) =
√
τw/ρ(y).

Variable for turbulent statistics Semi-local scaling factors ( )∗

y δ∗v = µ(y)/(ρ(y)u∗τ (y))

u′′rms, v
′′
rms, w

′′
rms u∗τ (y)

ũ′′v′′ u∗τ (y)2

T ′rms T (y)

ρ′rms ρ(y)

As shown in Figure B.1 (top row), the improper use of the velocity transformation

by Trettel & Larsson [69] as inadvertently done in the previous non-refereed commu-

nication [72], specifically where u+ in Equation (4.5) describing the transformation by

Trettel & Larsson [69] (TL) is replaced by u(y)/u∗τ (y), leads to a systematic increase

of the intercept in the log-law region for increasing ∆T . Correcting this mistake (Fig-

ure B.1 (bottom row)) yields a much more acceptable collapse of bottom and top wall

data. The results shown in a later refereed publication by Ma et al. [71], who argue

that the TL transform performs poorly, especially at the top heated wall, showing

very high values of u+TL, are in fact consistent with this misuse of the transforma-

tion. The latter was implicitly suggested in the previous communication [72] by the

proximity of the velocity normalization u+ = u(y)/u∗τ (y) to the equation reporting

the TL transformation (Equation (4.5) in Section §4.2.1). If one carefully reviews the

published work by Trettel & Larsson [69], nowhere in their manuscript is u+ scaled

with the semi-local quantity u∗τ (y). This clarification can benefit the community by
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Figure B.1. Mean streamwise velocity versus semi-locally scaled wall-
normal coordinate y∗ based on the transformation by Trettel & Lars-
son [69] with improper normalization for the u+ term appearing in
Equation (4.5), that is u+ = u(y)/u∗τ (y) (top row, (a)–(d)) compared
with the correct one u+ = u(y)/uτ (bottom row, (e)–(h)); reference
ideal gas data ((a), (e)) and pb = 1.1pcr and ∆T = 5 K ((b), (f)), 10 K
((c), (g)), and 20 K ((d), (h)); bottom wall (—–, thickened) and top
wall (- - -). Profiles by the law of the wall (u+ = y+ for the viscous
sublayer; u+ = 1

κ
ln y++C where κ = 0.41 and C = 5.2 for the log-law

region) are shown with a thin solid line for reference. Ma et al. [71]’s
reporting of the Trettel & Larsson [69]’s transformation at the top
heated wall of their computational setup is shown with symbols (◦)
in subfigure (d) which is consistent with the improper normalization
for the u+ term in Equation (4.5); they used nitrogen as a working
fluid at pb = 38.7 bar ' 1.14pcr; Tbot = 100 K and Ttop = 300 K.

reducing confusion on the correct application of the TL transform that may have

stemmed from the previous non-refereed communication.
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